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Abstract

Vitiligo is the most frequent human pigmentary disorder, characterized by progressive 

autoimmune destruction of mature epidermal melanocytes. Of the current treatments offering 

partial and temporary relief, ultraviolet (UV) light is the most effective, coordinating an intricate 

network of keratinocyte and melanocyte factors that control numerous cellular and molecular 

signaling pathways. This UV-activated process is a classic example of regenerative medicine, 

inducing functional melanocyte stem cell populations in the hair follicle to divide, migrate, and 

differentiate into mature melanocytes that regenerate the epidermis through a complex process 

involving melanocytes and other cell lineages in the skin. Using an in-depth correlative analysis of 

multiple experimental and clinical data sets, we generated a modern molecular research platform 

that can be used as a working model for further research of vitiligo repigmentation. Our analysis 

emphasizes the active participation of defined molecular pathways that regulate the balance 

between stemness and differentiation states of melanocytes and keratinocytes: p53 and its 

downstream effectors controlling melanogenesis; Wnt/β-catenin with proliferative, migratory, and 

differentiation roles in different pigmentation systems; integrins, cadherins, tetraspanins, and 

metalloproteinases, with promigratory effects on melanocytes; TGF-β and its effector PAX3, 

which control differentiation. Our long-term goal is to design pharmacological compounds that 

can specifically activate melanocyte precursors in the hair follicle in order to obtain faster, better, 

and durable repigmentation.
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1. REPIGMENTATION IN VITILIGO: CLINICAL PROFILE

A. General Aspects

Vitiligo is an acquired autoimmune disorder of polygenic multifactorial inheritance, 

affecting 0.3–0.5% of the population worldwide.1 The typical presentation is a progressive 

depigmentation of the skin and mucous membranes due to melanocyte disappearance. The 

striking visual contrast between the normal pigmented and lesional skin causes 

psychological and social stigma among all patients, which can be devastating on darker skin 

phototypes. While the vitiligo lesional epidermis is eventually completely devoid of 

melanocytes,2 the pigmentation of terminal hairs is usually preserved. This observation 

suggests the presence of an intact hair bulb, and an intact bulge melanocyte reservoir in 

depigmented vitiligo skin, both of which are spared from the effects of the immune attack. 

The presence of these melanocyte precursors in the hair follicles of vitiligo depigmented 

lesions3 was recently confirmed by our immunostaining studies.4 Proposed explanations for 

the presence of an intact hair follicle bulge and bulb are as follows: (i) sequestration of the 

melanocyte-associated antigens from the recognition by autoreactive CD8+ T cells,5 due to 

the deep location of melanocytes within the hair follicle, and (ii) the effect of immune 

privilege in the hair follicle5, 6 that protects melanocytes in these locations from cytotoxic T 

cells.

The most accepted hypothesis for vitiligo pathogenesis is that both genetic and nongenetic 

factors affect melanocyte function and survival, eventually leading to their immune-

mediated destruction.7 Circulating skin-homing cytotoxic T cells8 and infiltrates of activated 

cytotoxic CD8+ T cells and macrophages were described at the margins of active vitiligo 

lesions,9–12 suggesting that the attack of CD8+ T cells on epidermal melanocytes is a key 

event for depigmentation.13 Recent reports show that CD8+ T cells are major producers of 

interferon (IFN)-γ,14 which is also found to be required for depigmentation in mouse 

models of vitiligo; IFN-γ induces the expression of the chemokine CXCL10, which 

promotes the migration of autoreactive T cells into the epidermis.15 The genetic factors in 

vitiligo are meaningful, since 15–20% of patients report one or more affected first-degree 

relatives, and the studies on monozygotic twins showa concordance rate of ~23%.16 

Genome-wide association and sequencing analyses have produced a rich yield of vitiligo 

susceptibility genes, encoding proteins with immune- or melanocyte-specific functions.17, 18 

Studies using melanocyte cultures from non-lesional vitiligo skin showed that long-term 

exposure to sub-cytotoxic oxidative stress induced a pro-senescent hypermitotic phenotype, 

which might explain the disappearance of functional melanocytes in the lesional 

epidermis.19 It was proposed that the loss of normal pigment regeneration may be caused by 

depletion of melanocyte stem or progenitor cells;19 however, this is contradicted by our 

immunostaining study4 that showed that the melanocyte stem cell populations are preserved 

in the hair follicle bulge of the untreated vitiligo skin, in similar numbers as in narrow band 

ultraviolet B (NBUVB) treated vitiligo or to skin collected from healthy controls. It is not 

yet proven whether or not these hair follicle bulge melanocyte stem cells from vitiligo skin 

are impaired in their ability to proliferate, migrate, and differentiate. Other mechanisms 

proposed for melanocyte destruction in vitiligo include involvement of cytotoxicity by 
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antibodies,20 defects of melanocyte adhesion, neurogenic and biochemical damage, and 

autocytotoxicity.1

The goal of classic vitiligo therapies is to replenish the white spots with new active 

melanocyte precursors recruited in response to UV light and/or topical and oral drugs,21, 22 

either from the hair follicle infundibulum (INF) or bulge through the process called 

repigmentation. In vitiligo, the generic term “repigmentation” refers to the replenishment of 

pigment cells only, since the basal keratinocytes appear in normal number in the 

depigmented skin. Standard vitiligo treatment has not had any conceptual advance since the 

introduction of psoralen plus ultraviolet A (PUVA) in the late 1940s.23 It is recognized that 

the main weaknesses of vitiligo treatment are its long duration and failure to provide 

definitive and complete repigmentation, producing an unsatisfactory clinical outcome. The 

lack of progress in vitiligo repigmentation is largely due to an incomplete understanding of 

the regulatory pathways involved in melanocyte stem cell activation in the hair follicle, and 

of their migration, proliferation, and differentiation to finally repopulate the basal epidermis. 

In this context, there is a compelling need for a better understanding of repigmentation 

biology. Exploring the full potential of melanocyte stem cells for the development of vitiligo 

therapies is a promising approach to achieve complete and stable repigmentation of the 

affected skin.

B. Clinical Patterns of Repigmentation

Repigmentation in human vitiligo occurs in different clinical patterns, of which the most 

prevalent has a perifollicular distribution24, 25 (Fig. 1A, B), indicating that the hair follicle is 

the main source of repigmentation. Using the double transgenic K14-Steel factor (SLF)/Dct-
lacZ mice,26, 27 investigators depleted the amplifying populations of melanoblasts with c-

KIT-blocking antibodies and then observed a perifollicular mottled repigmentation pattern 

similar to that seen in repigmenting human vitiligo (Fig. 1C).28 In this humanized model, the 

expression of SLF induced the intraepidermal migration of melanocytes; the use of Krt14 

promoter forced constitutive expression of SLF in mouse epidermis, similar to that seen in 

human skin.

The marginal repigmentation pattern presents as a hyperpigmented rim at the border of the 

white vitiligo macules (Fig. 1D),3, 25 occurring independently of or in combination with the 

perifollicular pattern. This pattern suggests activation of functional epidermal melanocytes at 

the lesional borders.29

Two other patterns have been observed in the minority of patients:25 diffuse (generalized 

darkening occurred across the patches supposedly from dermal or epidermal melanocyte 

precursors that persist in the center of the lesions)29 (Fig. 1E) and combined (including more 

than one pattern, or when the repigmentation does not fit into any single type).29

Recently, a fifth repigmentation pattern called “medium spotted” was described in a cohort 

of European pediatric population.30 This pattern is located in areas with no hairs or with low 

density of hairs (palms, soles, lips, ankles, and anterior wrists), and appears as irregular 

brown macules without a central hair follicle,30 and corresponds to a pattern previously 

described in a case report.31
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Vitiligo repigmentation can be induced by stimulation with different types of UV light1 and 

only modestly with topical products - corticosteroids, calcineurin inhibitors, or vitamin D 

analogs. Repigmentation is unpredictable, not proportional to the magnitude of the lesions, 

and often cosmetically insufficient.20 In the same patient, new vitiligo depigmentation in 

association with repigmentation of other regions is common.1 Depigmented areas where hair 

follicles are absent (palms, soles, mucosal, or semimucosal surfaces) are in general 

refractory to treatment due to the absence of main melanocyte reservoir.3

Clinical studies on Indian24 and Korean25 vitiligo populations analyzed the evolution of 

various repigmentation patterns under therapy. Accordingly, the perifollicular and marginal 

patterns showed the greatest stability post-therapy.24 The speed of repigmentation was 

significantly higher in the diffuse type compared to any of the other three types.24 The 

ability to retain areas of repigmentation was dependent on the type of stimulus and site of 

activation: NBUVB with emission peak at 311 nm predominantly induced a perifollicular 

pattern;25 PUVA-treated lesions exhibited a similar pattern, which in addition was described 

as being long-lasting and stable,24 while topical or systemic steroids induced a diffuse type 

of repigmentation.24

C. The Role of Melanocyte Stem Cell Reservoirs in Repigmentation

The clinical observations of perifollicular and marginal patterns of repigmentation, 

suggesting the implication of hair follicle bulge and of epidermal melanocyte reservoirs, 

prompted the need for confirmatory studies at the cellular and molecular level. Early studies 

identified an amelanotic cell population (3,4-dihydroxyphenylalanine [DOPA] [-]) in the 

outer root sheath (ORS) of hair follicles that could not be distinguished morphologically 

from the surrounding keratinocytes.32–34 This population could be activated after excision of 

epidermis by UV therapy,33, 34 or after ionizing radiation.32 UV exposure of depigmented 

vitiligo skin induced the appearance of pigmented islands with follicular cores containing 

melanocytes with large cell bodies.35 This was confirmed in vitiligo patients treated with a 

Chinese herbal treatment36 that stimulated inactive melanocytes in the middle and/or lower 

parts of the hair follicles; the inactive melanocytes proliferated and migrated along the ORS 

to the nearby epidermis and expanded radially, exhibiting perifollicular repigmentation.36 

The follicular reservoir of melanocyte precursors was also suggested by detection of DOPA 

(+) melanocytes in the scalp hair follicles after autologous transplantation of the lower 

portion of the hair follicles into depigmented vitiligo skin.37 Furthermore, in vitro 
experiments using cultures of human hair follicles revealed the existence of melanocyte 

lineage cells with significant potential for proliferation and further melanization.38 In the 

double transgenic K14-Steel factor (SLF)/Dct-lacZ mouse model,27 the observed upward 

migration of bulge Dct-lacZ(+) melanocyte precursors to the interfollicular epidermis (IE) 

provided confirmatory evidence that these precursors represent a reservoir for epidermal 

melanocytes.

Our group has recently designed an experimental platform that enabled the study of cellular 

and molecular mechanisms of perifollicular repigmentation in human vitiligo.4 The 

populations of melanocytes located in the bulge, infundibulum, and interfollicular epidermis 

of depigmented skin augmented by NBUVB exposure were identified based on the 
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expression of dopachrome tautomerase (DCT) and C-KIT (markers of melanocyte 

development), and tyrosinase (TYR; marker of melanocyte differentiation). Mature 

melanocytes (TYR(+)) were not found in the bulge, infundibulum, or interfollicular 

epidermis of depigmented vitiligo skin, although these areas were enriched in melanocyte 

stem cells (DCT(+)/KIT(−)) and melanoblasts (DCT(+)/C-KIT(+)), ready for activation. 

Furthermore, these three populations had some proliferative [KI-67(+)] and migratory 

[(MCAM(+)] abilities. In addition, a fourth population [DCT(−)/C-KIT(+)/TYR(−)], found 

in the hair follicle and interfollicular epidermis of the treated skin, may represent a 

secondary melanocyte germ.

The existence of a reservoir of precursors in the epidermis has been supported earlier by the 

identification in the rete pegs of normal human skin of a subpopulation of dendritic and 

immature c-KIT(+)/TYR(−) pigment cells.39 An independent study described an epidermal 

population of PAX3 (+) melanocytes with suspected regenerative capacity, distributed in the 

deepest part of the rete ridges.40 In a more recently reported case of palmar vitiligo 

repigmentation after PUVA,31 which is most consistent with the newly described “medium 

spotted” pattern,30 the repigmented lesions contained TYR(+) melanocytes in the epidermis, 

while adjacent vitiliginous skin lacked these cells. The active pigment production was 

hypothesized to originate from a non-follicular, intra-epidermal precursor source within the 

glabrous skin31 that can implicate immature melanocyte c-KIT(+)/TYR(−), or PAX3(+), as 

described above.

The presence of a dermal, extrafollicular melanocyte stem cell reservoir with capacity to 

replace the damaged melanocytes in the vitiligo epidermiswas previously hypothesized 

based on clinical and experimental findings,41 and was eventually confirmed. An 

extrafollicular dermal source of melanoblasts DCT(+) was identified in the secretory portion 

of the eccrine sweat glands after skin exposure to ionizing radiation.42 It seems that the 

precursors of these cells colonize sweat glands during development and can renew 

themselves in response to genomic stress (e.g., ionizing radiation); they are also capable of 

providing their differentiating progeny to the epidermis.42

In vitro experiments show that multipotent dermal stem cells isolated from human foreskin 

lacking hair follicles displayed a capacity for self-renewal and expressed neural crest stem 

cell markers (NGFRp75 and nestin), as well as an embryonic stem cell marker (OCT4), but 

not melanocyte markers, when grown as 3D spheres. In addition, cells derived from single-

cell clones were able to differentiate into multiple lineages including melanocytes. In a 3D 

skin equivalent model, sphere-forming cells differentiated into HMB45 (+) melanocytes, 

which migrated from dermis to epidermis and aligned singly among the basal layer 

keratinocytes in a similar fashion to pigmented melanocytes isolated from epidermis.43

The clinical and experimental observations discussed above confirm the role of the hair 

follicle melanocyte stem cell reservoir in vitiligo repopulation, and suggest the epidermal 

immature melanocytes as possible source for the non-perifollicular patterns. It is not yet 

experimentally proven whether the dermal extrafollicular melanocyte reservoir identified in 

sweat glands,42 or the source of melanocytes originated from multipotent dermal stem 

cells43 can or cannot regenerate the depigmented basal layer of vitiligo skin.
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2. BUILDING A WORKING MODEL OF MELANOCYTE REPOPULATION IN 

VITILIGO REPIGMENTATION

In the “epidermal melanin unit”,44, 45 the melanocytes and keratinocytes are in a tight 

anatomical and functional relationship that continues downwards in the hair follicle 

bulge.27, 46 Changes of these intimate interactions characterize numerous physiological and 

pathological states of the pigmentary system, including vitiligo depigmentation and 

repigmentation. Keratinocytes provide a catalog of paracrine factors and adhesion molecules 

that play a dominant role in regulating melanocyte survival, proliferation, and 

differentiation.46 Several reports have claimed that the ability of UV light to induce 

melanocyte regeneration requires a deep anatomic penetration, targeting the bulge4, 47, 48 

(where UV light augments migration, proliferation, and differentiation of melanocyte stem 

cells). Alternatively, UV light may activate the secretion by keratinocyte of a network of 

cytokines and paracrine growth factors in the interfollicular epidermis of the hair follicle, 

diffusing downwards in the bulge to stimulate the migration, proliferation, and 

differentiation of melanocyte stem cells.

Besides keratinocytes, multiple other skin cells have been shown to support optimal 

melanocyte function: for example, fibroblasts, adipocytes, endothelial cells, inflammatory 

cells,49 and dermal mast cells.50, 51 All of these cell types potentially have a role in vitiligo 

repigmentation.51 In the following paragraphs, we will discuss repigmentation induced by 

UV light, which appears to be more complex and have superior stimulatory potential on 

melanocyte stem cells than other treatment alternatives.

The UV-induced repigmentation process consists of discrete components (Figs. 2–5):52–99 

keratinocyte stimulation and melanocyte activation by UV light (Fig. 2), melanocyte 

migration (including decoupling from the basement membrane and from keratinocytes, cell 

movement, and recoupling to the basement membrane and to keratinocytes; Fig. 3), 

melanocyte proliferation, and melanocyte differentiation (Fig. 4). These components are 

strictly regulated by complex signaling pathways, and will be further described in the next 

sections.

A. Melanocyte Activation Following UV Stimulation

Studies of human scalp hair indicated that the DOPA (−) ORS melanocytes contain some of 

the early melanocyte structural proteins, but none of the enzymatic components necessary 

for melanogenesis.100 It is conceivable that activation of ORS melanocytes in the hair 

follicle bulge initiates the synthesis of the structural and enzymatic proteins needed for 

melanin production. Several studies showed that the activation process is closely followed 

by migration and proliferation, which are paralleled by progressive differentiation,4, 33, 35 as 

the melanocytes move up along the hair follicle into the nearby epidermis.

An intimate interaction between melanocytes and keratinocytes is essential for the activation 

process. In hypermelanosis developed after repeated UV exposure, melanocyte activation is 

mediated by p53, as an immediate response to cellular and DNA damage.101, 102 Activation 

of p53 coordinates the release of keratinocyte paracrine/growth factors with melanogenic 

Birlea et al. Page 6

Med Res Rev. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity, and subsequently results in the induction of microphtalmia-associated transcription 

factor (MITF) and of downstream enzymes required for melanin biosynthesis62, 103 (Fig. 2).

B. Melanocyte Migration (Decoupling—Cell Movement—Recoupling)

Melanocyte migration, following the activation process, is initiated by the decoupling of 

melanocytes from the basement membrane44 and from keratinocytes.69 The release of 

paracrine, adhesion, and growth factors by keratinocytes which affect cell–cell adhesion is 

essential for the melanocyte decoupling–migration–recoupling cyclic process, and these 

factors will be described in the next paragraphs.

1. Melanocyte Decoupling from the Basement Membrane: Integrins—Integrins 

are the essential mediators of interactions between melanocytes and the basement 

membrane104 through attachment to vitronectin, fibronectin, and type I and IV collagen.105 

Conditions resulting in increased cell migration (embryonic development, wound healing, 

angiogenesis and metastasis) are accompanied by active changes in integrin expression106 

that initiate a shift from the stationary to motile cellular status. Similarly, during the 

repigmentation process, changes in expression of integrins’ subunits in melanocyte 

precursors can decrease cell adhesion to the basement membrane and orchestrate cell 

decoupling. In the absence of a repigmentation stimulus, no difference was found in the 

expression of integrin subunits α2, α3, α5, αv, α6, β1 and β3 in vitiligo lesional skin, 

compared to nonlesional skin and to normal human skin.107 Variation in the expression of 

integrins was observed in cultured melanocytes, following stimulation with UV or induction 

by stem cell factor (SCF), as outlined in detail in Fig. 3A.

2. Melanocyte Decoupling from the Basement Membrane: Metalloproteinases 
and Basement Membrane Abnormalities—Metalloproteinases (MMPs) are highly 

expressed during tissue remodeling, due to their capacity to cleave components of the 

extracellular matrix,108 preparing an optimal setting for cell migration. MMPs induce the 

decoupling of melanocytes from keratinocytes and coordinate the attachment of melanocytes 

to the next epidermal unit. Significantly lower expression of MMP-2 and MMP-9 has been 

reported in the vitiligo lesional border, as compared to the normal skin.108 This finding 

suggested that the defective function of MMPs in depigmented skin might impact the 

migratory ability of melanocyte precursors along the ORS to the lesional epidermis, 

impairing epidermal repopulation. Additional interesting data supporting the involvement of 

MMPs in the movement of melanocytic cells are summarized in Fig. 3A.

Ultrastructural abnormalities of the basement membrane have been observed frequently in 

vitiligo (e.g., focal gaps and multiple replication or layering directly beneath 

melanocytes).109, 110 The basement membrane has also been shown to contain increased 

amounts of the anti-adhesive molecule tenascin at the contact sites in melanocytes located 

near the lesional skin.107, 111 Thus, a defective basement membrane may contribute to 

melanocyte detachment in active vitiligo and can have a negative impact on melanocyte 

attachment to keratinocyte during epidermal repopulation with melanocyte precursors. 

Alternatively, increased tenascin and melanocyte detachment near the border of vitiligo 

patches may indicate an attempt by the surrounding epidermis to repigment the patch.
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3. Melanocyte Decoupling from Keratinocytes: E-Cadherin—The main 

melanocyte-keratinocyte adhesion mediator is E-cadherin112 based on its role in formation 

of adherens junctions. Decreased expression of E-cadherin, producing loss of cell-cell 

adhesion and increased migratory capacity of melanocytic cells, has been observed during 

neural crest cell migration,113 nevi formation,114 and melanoma development and 

metastasis.112, 114 There are multiple factors that contribute to the reduced E-cadherin 

expression, and thus melanocytic cell migration, as presented in Fig. 3B. Immunostaining 

studies have shown that E-cadherin is discontinuously distributed across melanocyte 

membranes in the non-lesional skin of human vitiligo patients, several months before 

clinical vitiligo lesions become apparent. This abnormality was associated with the 

detachment of melanocytes from the basal and suprabasal keratinocytes.115

The E-cadherin cytoplasmic domain binds to β-catenin and forms a complex80 (Fig. 3B) 

whose aberrant skin expression was associated with a variety of human malignancies and 

disorders resulting from epithelial–mesenchymal transition.116 Modulation of this signaling 

pathway may hold the potential for facilitating melanocyte migration in vitiligo 

repigmentation and should be further investigated.

4. Melanocyte Movement—Numerous studies have shown significant stimulatory effects 

of keratinocyte-derived cytokines and paracrine growth factors released by keratinocytes on 

melanocyte movement: α-MSH-MC1R85, 86 and SCF/c-KIT signaling pathways,87, 117 

ET-1,88, 117 bFGF,88, 117 and HGF88, 89 (Fig. 3C). Several experimental models that allow 

the manipulation of these signaling pathways4, 26, 27, 48, 98, 118, 119 (summarized in Table I) 

have provided valuable insights into the migration of melanocyte precursors.

Tetraspanins CD9 and CD151 have been implicated in affecting the motility of primary 

human melanocytes and intermelanocyte and melanocyte–keratinocyte adhesion based on 

their localization in areas of homotypic intercellular contact (including the tips of 

melanocyte dendrites), and on the ability of tetraspanin monoclonal antibodies to abrogate 

melanocyte migration.120 Although minimally explored so far, tetraspanins can be potential 

players in vitiligo repigmentation.

5. Melanocyte Recoupling—Molecular models of melanoma formation and metastasis 

showed that melanoma cells escaped from keratinocytes by downregulation of E-cadherin 

and upregulation of N-cadherin. Re-expression of E-cadherin in human melanoma cells 

restored keratinocyte coupling and inhibited the invasive potential,90 underlining the 

importance of the N- to E-cadherin switch in cell recoupling. E-, N-, and P-cadherin 

expressions (Fig. 3D) have been reported in normal human melanocytes,121 but their 

implication in melanocyte recoupling in vitiligo repopulation is unexplored, and awaits 

further investigation.

C. Melanocyte Proliferation

Studies of melanocyte proliferation after UV exposure have produced divergent results 

(Tables II4, 35, 48, 91, 99, 122–128 and III84, 98, 125, 129–133). Studies supporting melanocyte 

proliferation (Table II) found an increased number of melanocytes, after between 4 days and 

6 months of UVA or UVB exposure. The vast majority of studies observed an increased 
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number of melanocytes in the epidermis4, 48, 91, 99, 122, 123, 125–128, while a few observed 

melanocyte proliferation in the hair follicle ORS.4, 35, 48 The hypothetical mechanisms by 

which UV light stimulates melanocyte proliferation include direct effects on melanocytes or 

their stimulation by keratinocyte-derived factors: ET-1,68, 92, 93 SCF,68 bFGF,68 and α-

MSH68, 93 (Fig. 3). Consistent with the latter mechanism, increased serum levels of bFGF, 

SCF, and HGF were found in vitiligo patients undergoing active repigmentation with PUVA, 

as compared to untreated patients or to healthy controls.132

UV effects on melanocyte proliferation appear to be highly dependent on the type of UV 

used during clinical treatment or in the in vivo or in vitro studies. A single high dose of 

radiation seemed to be superior to repeated suberythemal exposures,125, 128 likely because it 

induced more DNA damage, more inflammation, and consequently a more prominent 

increase in melanocyte number. These findings suggest that UV-induced erythema is 

necessary to further stimulate melanocyte proliferation. This may explain the higher efficacy 

of NBUVB in inducing repigmentation versus PUVA (UVA requires 1000-fold higher dose 

than UVB to induce erythema)134 or topical compounds (e.g., calcineurin inhibitors135, 136 

and vitamin D derivatives,21 which induce modest inflammation and have been shown to 

suppress melanocyte growth).21, 135, 137

In contrast with the findings discussed, other studies (Table III) have reported that 

melanocyte migrate and/or differentiate rather than proliferate during repigmentation,98, 133 

and even that melanocyte proliferation was actually inhibited by UV exposure,130–132 thus 

leaving this question wide open for further investigation. Moving forward, standardization of 

the testing methods for UV-induced melanocyte proliferation, investigated endpoints, and 

data evaluation is imperative to explain the conflicting results. Toward this goal, we provide 

an outline for possible future research directions in Table IV.

D. Melanocyte Differentiation/Maturation/Melanization

During this process, the precursors from the bulge and hair follicles acquire melanocyte 

specialized features, specifically the formation and maturation of melanosomes and the 

ability to synthesize melanin. Pathways governed by p5396, 101–103 (Fig. 2), TGF-β94, 95 

(Fig. 4), and WNT/β-catenin48, 80, 97, 119 (Fig. 4), which involve both melanocytes and 

keratinocytes, are essential in melanocyte differentiation, all of them converging to 

activation of MITF and its downstream melanogenic enzymes. It seems that fibroblast-

derived paracrine factors, dickkopf-related protein 1 (DKK1), and neuregulin-1 (NRG1) 

contribute to regulation of melanogenesis. DKK1, which is secreted at high levels in the 

dermis of the palms/soles by fibroblasts, suppresses melanocyte growth and function by 

inhibiting the Wnt/β-catenin signaling pathway.49, 138, 139 NRG1, which is highly expressed 

by fibroblasts derived from darker skin, was shown to have significantly increased 

pigmentation in a reconstructed skin model and in cultured human melanocytes. It has been 

suggested that NRG1, acting through the ErbB3 or ErbB4 receptors, leads to the activation 

of intracellular signaling that include the PI3K and the MAPK pathways to regulate 

melanogenesis.49, 140

The specific implication of these pathways in vitiligo repopulation awaits exploration. 

Melanocyte differentiation has been shown to accompany the proliferation and/or migration 
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processes in different animal or human models of pigmentation, as outlined in Table 

I.4, 27, 48, 98, 118

This review reveals a rather limited knowledge of the interactions between different factors 

involved in NBUVB activation, migration, proliferation, and differentiation of melanocytes 

during the process of repigmentaion of human vitiligo lesions. Based on clinical 

observations and the research efforts of our group and others, we propose the following 

working model for melanocyte repigmentation in vitiligo (illustrated schematically in Fig. 

5). Melanocyte stem cells residing in the bulge reservoir (identified as DCT(+)/c-KIT(−)/

DOPA(−)),48 divide27, 48 and generate transient amplifying cells27 that are melanoblasts141 

identified as DCT(+)/c-KIT(+)/DOPA(−).48 In response to different stimuli (like ultraviolet 

[UV] irradiation, or wounds created in the skin), melanoblasts can exit the bulge.27, 48, 98 

Once in the infundibulum, the melanoblasts migrate along the ORS to the interfollicular 

epidermis;27, 48, 98 in parallel they proliferate,27, 48 while some differentiate, synthesizing 

melanin27 and becoming DOPA(+).4 Our current understanding is that some of these 

melanocyte precursors can reach the interfollicular epidermis in an immature state27 and 

enter into a quiescent state (maintaining an epidermal reservoir of precursors, as presented in 

the upper left-hand side of the figure), until activation by UV or other stimuli. These 

precursors may represent the source of marginal repigmentation observed clinically.31, 39 

Another population of melanocytes derived from the hair follicle reaches the interfollicular 

epidermis and continues toward terminal differentiation (as presented in the upper right-hand 

side of the figure).27, 48 These cells appear in concentric layers in the epidermis around the 

hair follicle ostia (perifollicular repigmentation),27 and continue to migrate colonizing the 

vacant areas27 in a radial pattern36 and gradually becoming strongly pigmented melanocytes 

[DCT(+)/c-KIT(+)/DOPA(++)].27, 36, 48, 98 We believe that the model presented here 

becomes functional in situations of crisis, such as vitiligo and skin wounds, when epidermal 

melanocyte and keratinocytes are depleted, or significantly dysregulated.

3. HARNESSING THE POWER OF REGENERATIVE MEDICINE IN VITILIGO 

USING NEW TECHNOLOGIES

Besides activation of melanocyte precursors in the hair follicles with UV light or drugs, 

regeneration of vitiligo epidermiswas achieved with different transplantation techniques 

using tissue and cellular grafting,142 which do not involve the hair follicle melanocyte 

source. Although autologous transplantation is a therapy used currently, it is based on adult 

melanocytes which are difficult to culture and amplify in large numbers in vitro.143

Of the numerous pluripotent stem cell sources used for successful melanocytes induction 

(Table V),143–152 the multilineage differentiating stress-enduring (Muse) cells isolated from 

human dermal fibroblasts are considered the most promising for epidermal regeneration, due 

to their location in accessible mesenchymal tissue, and their ease of isolation by simple 

labeling with SSEA-3 marker.150 They can be readily reprogramed into functional 

melanocytes (Muse melanocytes) by using certain combinations of factors and cytokines. 

Muse melanocytes express several melanocyte-specific markers, were DOPA (+), produce 

melanin, and can integrate themselves into the basal layer of epidermis when they are 
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incorporated into 3D-cultured skin models. Thus, functional Muse melanocytes generated 

from adult human fibroblasts can be applied to autologous transplantation for pigment 

disorders such as vitiligo.150

Recognizing the diverse differentiation ability of human pluripotent stem cells (hPSCs), and 

the power of modern techniques of isolation, purification, and reprogramming, we anticipate 

that future studies will explore the therapeutic potential of different candidate cell 

populations (presented in Table V)147–149 in initiating vitiligo repigmentation.

5. CONCLUSIONS

The limited success of current topical treatments and the failure of NBUVB to induce 

satisfactory repigmentation in most vitiligo patients highlight the pressing need for a better 

understanding of repigmentation biology. In this review, we have summarized data 

(generated using in vitro testing platforms, human and mouse models of vitiligo, studies on 

normal melanocytes, neural crest cells, melanoma cells, the wound healing process, and 

finally, clinical observations) suggesting that repigmentation in vitiligo requires the 

coordinated participation of essential molecular players in the key pathways that coordinate 

the balance between stemness and differentiation states of melanocytes including the 

following: p53 and its downstream effectors with melanogenic effects; Wnt/β-catenin with 

pro-proliferative, migratory, and differentiation roles in different pigmentation systems; 

integrins, cadherins, tetraspanins, MMPs, all with promigratory roles on melanocytes; TGF-

β, its downstream effector PAX3 and their interaction with SOX10, all with essential roles in 

regulating melanocyte maturation. We have emphasized the exciting potential for designing 

future studies, based on standardized in vitro, in vivo, and clinical methods that can provide 

reproducible, reliable, and correlative results that define the mechanism(s) of repigmentation 

in vitiligo. An improved understanding of the molecular mechanisms that control 

melanocyte stem cells has the potential to lead to the identification of new drugs that can 

activate melanocyte stem cells and regenerate normal pigmented epidermis in vitiligo. While 

still relatively unexplored, the use of hPSCs represents a promising alternative that holds 

great potential for the future design of regenerative medicine treatments for vitiligo and 

other pigmentary disorders.
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Figure 1. 
Repigmentation patterns in human vitiligo and mouse model. (A, B, C) Perifollicular 

repigmentation pattern: (A, B) in human vitiligo after narrow band ultraviolet B (NBUVB) 

therapy; (C) in K14-Steel factor (SLF)/Dct-lacZ double transgenic mouse treated with c-Kit-

blocking antibodies. (D) Marginal repigmentation pattern in human vitiligo. (E) Diffuse 

repigmentation pattern in human vitiligo. Panels A–C: Reproduced from [28]. Panel D: 

Reproduced from [3]. Panel E: Authors’ original. Arrows point toward the specific 

repigmentation pattern described in each panel.
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Figure 2. 
Melanocyte activation integrated in the schematic view of the UV-induced pigmentation 

pathway in the normal skin. Once stimulated by UV light, p53 initiates the release by 

keratinocyte of melanogenic paracrine growth factors and cytokines: adrenocorticotropic 

hormone (ACTH),52 α-melanocyte-stimulating hormone (α-MSH),52,53 endothelin-1 

(ET-1),54–56 stem cell factor (SCF),57 hepatocyte growth factor (HGF),58 basic fibroblast 

growth factor (bFGF),54,56 leukemia inhibitory factor (LIF),59 and granulocyte macrophage 

colony-stimulating factor (GM-CSF).60,61 The keratinocyte factors further interact with their 

corresponding receptors on melanocytes, and induce melanocyte activation, with subsequent 

stimulation of microphtalmia-associated transcription factor (MITF)62,63 and its downstream 

targets, the melanogenic enzymes Tyrosinase (TYR), Tyrosinase-related protein 1 (TYRP1), 

and Dopachrome tautomerase (DCT); this cascade leads to synthesis of melanin and 

melanocyte differentiation (see Fig. 4). MITF, the master regulator of melanogenic pathway, 

is activated through three signaling pathways regulated by cAMP,64,65 protein kinase C 

(PKC),63,66,67 and mitogen-activated protein kinase (MAPK)63,67 to subsequently induce 

proliferation and differentiation of human melanocytes.68 Figure based and modified from 

[62, 63]. UVB was shown to induce all keratinocyte factors included in the figure. *Factors 

activated by both UVB and UVA. Figure 2 was done by the medical illustrator Debbie 

Maizels.
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Figure 3. 
Component processes of melanocyte migration (A–C).

(A) Melanocyte decoupling from basement membrane. Left-hand side section: PUVA 

induces the expression of α2 βl and α3 βl receptors in human melanocyte, which mediates 

melanocyte detachment from basement membrane.69 Middle section: SCF downregulates 

the expression of α2 receptor, and upregulates the expression of α3, α5, and β1 integrin 

receptors in human neonatal melanocytes, which enhance melanocyte decoupling.70 Right-
hand side section: NBUVB increases the expression of endothelin receptor B (ETRB)-

induced metalloproteinases (MMPs) and p125FAK in melanocyte, melanoma cells, and 

keratinocyte,54,71 which enhances melanocytic cells decoupling from the basement 

membrane. PUVA also induces significant upregulation of MMP-2.72

(B) Decoupling of melanocyte from keratinocyte. Melanocyte decoupling from keratinocytes 

is orchestrated by ET-173 and hepatocyte growth factor (HGF),58 both inhibitors of E-

cadherin; decreased expression of E-cadherin in UVB-irradiated melanocytic cells73–75 and 

keratinocytes76 produces loss of cell–cell adhesions. E-cadherin is also repressed in human 

keratinocytes by transcription factors SLUG and SNAIL77,78 whose expression is elevated 

by UV,79 possibly through WNT/β-catenin activation.80

(C) Melanocyte movement. UV-induced loss of E-cadherin releases β-catenin,76 which 

forms a complex with a Frizzled (FZD) receptor, and further binds a WNT ligand expressed 

by keratinocyte; these events lead to β-catenin translocation from cytoplasm to the nucleus 

where β-catenin induces the expression of WNT target genes (SNAIL/SLUG, MMP-2, 
MMP-9) which under UV, stimulate melanocyte migration.72, 74,81–84 Melanocyte migration 

is also stimulated by α-MSH-MC1R85,86 and SCF/c-KIT signaling pathways,87 ET-1,88 

bFGF,88 and HGF.88,89

(D) Melanocyte recoupling. Melanocyte recoupling to keratinocyte to reform the epidermal 

melanin unit can be supposedly initiated by increased expression of E-cadherin90 in absence 
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of UV-induced stimulation of ET-1, ET-3, and HGF. Subsequently, E-cadherin can bind β-

catenin, sequestering it in the cytoplasm, thus reestablishing the melanocyte–keratinocyte 

attachment. Experimental evidence used for this figure was generated in human, and mouse 

models, or using data from in vitro experiments performed on melanocyte/melanoma/

epidermoid carcinoma cells. Pink, blue, and pink–blue arrows denote the action of either 

UVA or UVB, or of both, respectively. *Factors that stimulatemelanocyte proliferation.91–93 

Figure 3 was done by the medical illustrator Debbie Maizels.
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Figure 4. 
Melanocyte differentiation. Transforming growth factor β (TGF-β) signaling pathway.

(A) In the absence of UV radiation (left-hand side section), keratinocytes express TGF-β 
that blocks melanocyte differentiation via SMAD signaling94,95 by repressing PAX3. In the 

presence of UV, the JNK/AP-1 pathway downregulates TGF-β (middle section). TGF-β is 

itself repressed in epidermal keratinocytes by p53 that promotes melanocyte 

differentiation.95,96 (B, C) Canonical WNT signaling pathway.

(B) In the absence of WNT: Upper side in the melanocyte nucleus-the complex of PAX3-

SOX10 can activate the expression of MITF. Lower side in the melanocytes nucleus-the 

transcriptional repressor complex PAX3-LEF1-groucho-related proteins (GRGs) represses 

DCT transcription.97

(C) In the presence of WNT: Upper side in the melanocyte nucleus-β-catenin is activated by 

WNT and, together with LEF1, upregulates expression of MITF. Lower side in the 
melanocyte nucleus-activated β-catenin also forms an activator complex on the DCT 
promoter with MITF and LEF1 and displaces the repressor complex containing PAX3. 
SOX10 can also synergistically activate DCT with MITF. Experimental evidence used for 

this figure was generated in human and mouse. Parts B and C of Figure 4 are based on and 

modified from [97]. Figure 4 was done by the medical illustrator Debbie Maizels.
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Figure 5. 
Working model of the repigmentation pathway. This scheme was reproduced and modified 

from [48] and is based on data produced in a K14-Steel factor (SLF); Dct-lacZ double 

transgenic mouse,27 in a non-vitiligo Dct-LacZ+ mouse after wounding or UVB exposure,98 

or in C57 black male mice after PUVA,99 and in human vitiligo after NBUVB4 or PUVA 

treatment,35 or after application of topical Chinese herbal medication.36 DCT, dopachrome 

tautomerase; DOPA, 3,4-dihydroxyphenylalanine; HF, hair follicle; IE, interfollicular 

epidermis; INF, infundibulum. Figure 5 was done by the medical illustrator Debbie Maizels.
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Table II

Overview of the In Vitro, In Vivo, and Clinical Studies Supporting Melanocyte Proliferation Following UV 

Exposure

Test system UV exposure Results Ref.

In vitro data

Melanocytes from black and 
white donors

UVA Melanocyte proliferation 7 and 14 days after UV exposure vs 
non-irradiated cells

122

F1 mice of HR-1 × HR/De UVB Increased melanocyte number starting on day 7 and markedly 
increased on day 14

48

In vivo data

C57B1 mice UVA Melanocyte proliferation in epidermis after UV exposure 123

C57B1 mice UVB Recruitment of melanocytes or their precursors from outside of 
epidermis contributed to proliferation of melanocyte after UV 
exposure

124

C57 black mice UVA Melanocyte proliferation 6–7 days after UV exposure 99

C57 black mice UVB Increased melanocyte number 2 weeks after UV exposure 91

SKH-2 mice UVB Melanocyte proliferation 4 days after UV exposure 125

Humanized F1 hairless HR-1 × 
HR/De humanized mouse

UVB Increased melanocyte number in epidermis on days 7 and 14 of 
UV exposure

48

Clinical data

Vitiligo human skin, Fitzpatrick 
II, IV

PUVA Melanocyte proliferation in the hair follicle ORS after 2 months 
of PUVA

35

Normal human skin, Fitzpatrick 
III, IV

UVA and UVB Increased melanocyte number on days 7 and 14 of UV exposure 126

Human nevi UVA and UVB Increased melanocyte proliferation in nevi excised 7 days after 
UV exposure

127

Normal human skin, Fitzpatrick 
IV, V

UVa Increased melanocyte proliferation on day 14 after UV exposure 128

Vitiligo depigmented and 
repigmented skin

NBUVB Increased melanocyte number in HF and IE after 3 and 6 months 
of phototherapy

4

UV, ultraviolet; IE, interfollicular epidermis; HF, hair follicle; NB, narrow band; vs, versus; ORS, outer root sheath; PUVA, psoralen + UVA.

a
Type of UV used not specified.
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Table III

Overview of the In Vitro, In Vivo, and Clinical Studies Reporting Absent or Negative UV Effect on 

Melanocyte Proliferation

Test system UV exposure Results Ref.

In vitro data

Human melanocytes UVa Decreased melanocyte proliferation upon direct UV exposure 
and activated melanin synthesis

129

Human melanocytes UVB Inhibition of melanocyte proliferation upon direct UV exposure 130

Human melanocytes PUVA PUVA inhibited melanocyte proliferation 131

Human melanocytes UVA and UVB Decreased number of melanocytes after UVB exposure, whereas 
no change in their number after UVA exposure

132

Human melanocytes PUVA, NBUVB PUVA did not induce immediate effects on melanocyte 
proliferation vs NBUVB

84

In vivo data

Pigmented hairless Hr (SKH-2) 
mouse

UVA UVA did not increase melanocyte proliferation 125

Transgenic Dct-LacZ mice 
(wounded)

UVB Presence of wound or UVB exposure did not increase 
melanocyte proliferation

98

Clinical data

Vitiligo human skin PUVA PUVA did not stimulate melanocyte proliferation but rather their 
migration

133

a
75% UVB and 25% UVA.

NBUVB, narrow band UVB; PUVA, psoralen and UVA; UV, ultraviolet; vs, versus.
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Table IV

Future Research Directions for Development of Research Platforms

Repigmentation process component Future directions

Melanocyte activation • Perform comprehensive investigations of UV-induced p53 activation pathway in human 
epidermis and hair follicle, focused on the analysis, at different time points, of p53 
upstream regulators and downstream effectors in the lesional, nonlesional skin, and at 
the lesional border

• Investigate the molecular signals of UV-exposed vitiligo skin that activate the quiescent 
bulge melanocyte precursors using the in vitro or in vivo models

• Investigate the fine-tuned molecular activation events induced by different regimens of 
UV exposure (PUVA, NBUVB), which stimulate the melanocytes differently, in order to 
identify the key-settings that activate the melanocytes better or faster

Melanocyte migration • Elucidate changes in dynamics of integrins and MMPs expression at the borders of 
vitiligo lesions during UV exposure

• Clarify the implication of tetraspanins in the NBUVB-induced motile phenotype of 
melanocyte during vitiligo repigmentation

• Investigate the interplay between cadherins (E, N, P) in melanocyte decoupling from and 
recoupling to keratinocyte. Explore the effects of E-cadherin-β-catenin interplay, and of 
other WNT pathway component proteins in the human melanocyte proliferation, 
migration, and differentiation induced by NBUVB

• Elucidate the changes in the melanocyte–keratinocyte interactions during migration 
from bulge to epidermis by using in vitro assays and mouse models

Melanocyte proliferation • Clarify the conflicting data on UVA and UVB action in order to highly induce the 
melanocyte proliferation with UV alone or in combination with other pharmacologic 
effectors

Melanocyte differentiation • Explore the catalog of factors that are known to mobilize or to inhibit the differentiation 
of melanocyte precursors that are either in a waiting status (quiescence) or are shifting 
toward an active status

• Design experiments to show compartment-specific effects (bulge vs. epidermis) and 
cell-specific effects (melanocyte, keratinocyte) of TGF-β and WNT/β-catenin in vitiligo 
human skin treated with NBUVB

MMP, metalloproteinase; NBUVB, narrow band ultraviolet B; PUVA, psoralen and ultraviolet A; TGF, transforming growth factor; UV, ultraviolet.
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Table V

Harnessing the Power of Regenerative Medicine in Vitiligo: Multiple Candidate Cell Populations for Initiating 

Vitiligo Repigmentation

Cell lineage Characteristics and technology Ref.

Mesenchymal stem 
cells (MSCs)

• Harvested as adherent cells from mesenchymal tissue

• Adult stem cells with a lower risk of tumorigenesis that exist in mesenchymal tissues (such 
as dermis and fat tissue)

• Ability to differentiate into a broad spectrum of cells, of mesodermal, ectodermal, or 
endodermal lineages

• Generally composed of crude cell populations and contain different cell types based on 
their cell surface antigens

143

Embryonic stem (ES) 
cells and induced 
pluripotent stem (iPS) 
cells

• Attractive cell sources for melanocyte induction

• iPS cells are generated from somatic cells, such as fibroblasts using reprogramming 
methods

• Limitation for their clinical use:

– Ethical problems in obtaining ES cells (from fertilized eggs)

– Potential risk of tumorigenesis for ES and patient-specific iPS cells

144–149

• Valuable material manipulated to reproduce ultrastructural abnormalities in different 
diseases, by modeling neural crest induction, melanocyte specification, and disease-related 
pigmentation defects

• Human and mouse pluripotent stem cells were successfully differentiated into functional 
melanocytes under conditions that recapitulated the normal developmental process of 
human melanocytes in an in vitro condition

51

• The pluripotent stem cell techniques:

– Modeled pathological melanogenesis enhancing the reproduction of the 
ultrastructural features of pigmentation defects in Hermansky–Pudlak and 
Chediak–Higashi syndromes

– Facilitated identification of a novel role of NF1 in the regulation of melanocyte 
senescence

148, 149

Multilineage 
differentiating stress-
enduring (Muse) cells

• Reside among adult human MSCs

• Have characteristics similar to both pluripotent stem cells and MSCs:

– Can be isolated by fluorescence-activated cell sorting (FACS)

– Ability to self-renew and differentiate into endodermal, mesodermal, and 
ectodermal lineages from a single cell

– Low telomerase activity; do not form tumors in vivo, which makes them more 
attractive, with a higher potential for clinical application than ES and iPS cells

150

• A muse-adipose tissue (AT) cell lineage was purified form the adipose tissue, that are 
capable of spontaneously differentiating into multiple cell lineages, including neural cells 
that have a common origin with melanocytes

151

Skin-derived precursor 
cells (SKPs)

• Reported as multipotent mesenchymal stem cells in human foreskins, and in the connective 
tissue of the dermis and adipose tissue like Muse cells, from which they seem to be distinct

• Not associated with particular structures such as dermal papilla, connective tissue sheath, 
or hair follicular epithelium

• They express the SKP markers Snail and Slug, in contrast to Muse cells

152
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