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Induced pluripotent stem cell (iPSC) technology has initiated a new era in biomedical science. The skin has been
realized as an ideal platform for iPSC applications; unlike other organs, the skin is easily accessible, highly
proliferative, and reconstitutable. Currently, skin equivalents can be generated from iPSCs not only from healthy
individuals but also from patients with genodermatoses, providing novel platforms for dissecting disease
pathophysiology and establishing cell-based therapy. With their developmental plasticity, iPSCs may also enable
the regeneration of skin appendages. The iPSC technology may provide novel remedies for intractable disorders,
once key issues particularly, safety concerns, are cleared.
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INTRODUCTION
Human induced pluripotent stem cells
(hiPSCs) hold great promise as material
for regenerative medicine because of
their unlimited proliferative capacity,
mutipotency to differentiate into multi-
ple lineages and, importantly, ethical
acceptability (Uitto, 2011; Okano
et al., 2013). The significance of
hiPSCs is especially highlighted in the
development of cell-based remedies for
intrinsically less proliferative organs,
represented by the central nervous
system, where induction of tissue stem/
progenitor cells from undifferentiated
stem cells is necessary (Nakamura and
Okano, 2013; Okano et al., 2013). In
contrast to central nervous system, the
skin and its appendages are endowed
with high regenerative capacity
enabling their continuous self-renewal
(Cotsarelis, 2006; Blanpain and Fuchs,
2009). Putative epithelial and dermal
stem cell populations have been
identified and isolated as living cells
from human skin (Barrandon and
Green, 1987; Li et al., 1998; Jahoda
et al., 2003; Toma et al., 2005; Jensen

and Watt, 2006; Ohyama et al., 2006;
Kuroda et al., 2010). Methodologies
for in vitro expansion of human
keratinocytes (KCs) and fibroblasts have
been established and three-dimensional
human skin equivalent with epidermal
and dermal layers is readily available for
severe burn patients (Green et al., 1979;
Pellegrini et al., 1999). However, major
obstacles still remain, which can be
achieved with the use of hiPSCs.
Drawing some parallels with recent
advances in iPSC research for central
nervous system regeneration for spinal
cord injury (SCI; Nori et al., 2011;
Kobayashi et al., 2012; Nakamura and
Okano, 2013; Okano et al., 2013), the
major focus of iPSC research in our
institution, we attempted to delineate
substantial benefits of using hiPSCs in
investigative and clinical dermatology.

iPSC TECHNOLOGY OPENS A NEW
ERA OF MEDICAL SCIENCE
The seminal discovery by Yamanaka
and Takahashi that dermal fibroblasts
can be directly reprogrammed into a
pluripotent stage analogous to that of

embryonic stem (ES) cells by the intro-
duction of only four transcription factors
(Klf4, Oct4, Sox2, and c-Myc) has
greatly impacted regenerative medicine
(Takahashi and Yamanaka, 2006;
Takahashi et al., 2007). Within a short
time period, variety of cell types of
multiple species, including human and
non-human primates, has been
successfully dedifferentiated into iPSCs
(Uitto, 2011; Harding et al., 2013). In
addition to ES cell-like unlimited
proliferative capacities, iPSCs possess
pluripotency to differentiate into all
three germ layers and contribute to
various tissues (Takahashi and Yama-
naka, 2006; Takahashi et al., 2007).
Theoretically, iPSCs can be artificially
differentiated into desired terminally
differentiated cells in vitro, when
exposed to culture conditions approp-
riately directing their fate. Indeed,
well-differentiated and functional cell
populations, such as neural cells (Nori
et al., 2011), cardiomyoctes (Kattman
et al., 2011), and hematopoietic stem
cells (Amabile et al., 2013) have been
generated from hiPSCs. The hiPSCs can
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be obtained from any individuals and
are free from ethical issues accomp-
anying human ES cells in using the
human early embryos for their establish-
ment. Cell populations that can hardly
be prepared from adult tissue, for
instance neural stem/progenitor cells
(NS/PCs), can be induced from iPSCs
(Nakamura and Okano, 2013). Thus,
iPSCs provide immense opportunities
for investigations of inaccessible human
tissue, patient-specific cell therapies,
and tissue engineering (Okano et al.,
2013).

THE SKIN PROVIDES A PROVING
GROUND FOR hiPSC RESEARCH
With its easy accessibility, the skin is an
attractive repository of materials for
iPSC generation (Uitto, 2011). Cellular
components of the skin, such as KCs,
dermal cells, and melanocytes, have
been successfully reprogrammed into
hiPSCs (Takahashi et al., 2007; Aasen
et al., 2008; Carey et al., 2009; Utikal
et al., 2009; Figure 1). Interestingly, the
advantage of using skin-derived cells for
iPSC generation is not limited to their
easy collectability. When transduced
with four Yamanaka factors, human
foreskin and hair follicle KCs far more
efficiently gave rise to iPSCs compared
with fibroblasts (Aasen et al., 2008).
Follicular dermal papilla cells and
melanocytes were shown to upregulate
SOX2 (Utikal et al., 2009; Tsai et al.,
2011). Taking advantage of intrinsic
upregulation of Klf4 as well as Sox2,

murine dermal papilla cells were
successfully dedifferentiated into iPSCs
with Oct4 alone (Tsai et al., 2011).
Although, four factors were currently
needed to reprogram human dermal
papilla cells (Higgins et al., 2012),
reprogramming with fewer factors are
theoretically possible. These suggest that
constantly self-renewing skin contains
stem cell populations of respective cell
lineages, which may be less laboriously
reprogrammed into iPSCs.

Following adoption of methodologies
developed during the establishment of
inducing KCs from human ES cells, KCs
with the ability to reconstitute epidermal
structures were induced from hiPSCs
following exposure to retinoic acid and
BMP4 (Itoh et al., 2011; Veraitch et al.,
2013; Figure 1). Human melanocytes
were also induced when iPSCs were
converted into embryoid bodies and
then incubated with endhothelin-3,
stem cell factor and WNT3A (Ohta
et al., 2011; Figure 1). Although, the
complexity of bona fide skin is not
currently reproduced, essential compo-
nents for pigmented three-dimensional
skin equivalent are available from
hiPSCs. For experimental evaluation of
iPSC-based therapy for SCI, hiPSC-
derived NS/PCs need to be transplanted
in the spinal cord and their biological
behavior is not easy to monitor once
implanted (Okano et al., 2013;
Figure 2a). In contrast, grafted hiPSC-
skin equivalents are easily observable
for the assessment of safety concerns,

including long-term stability and tumor-
igenicity (Figure 2b). Accordingly, the
skin has clear advantages over other
organs in hiPSC investigation.

STEPWISE APPROACH FOR THE
ESTABLISHMENT OF hiPSC-BASED
TREATMENT
In order to establish iPSC-based therapy
for impaired tissue recovery, several key
issues need to be addressed in a step-
wise manner: (1) clarification of proto-
cols to direct undifferentiated stem cells
toward full differentiation, (2) delinea-
tion of optimal environmental host con-
ditions for engraftment of iPSC-derived
cell therapies, (3) assessment of thera-
peutic efficacy of iPSC-derived tissues,
and (4) determination of stability and
safety of iPSC-derived therapies in vivo,
particularly in humans. Using animal
models (mostly rodents) for SCI and
NS/PCs derived from ES cells/iPSCs,
our group demonstrated that: (1) the
subacute phase of SCI enabled the most
efficient transplanted cell integration to
the injured host neurons, (2) grafted
hiPSC-NS/PCs prompted motor func-
tional recovery after SCI not only in
mice (Nori et al., 2011) but also in
common marmosets (Kobayashi et al.,
2012) without any sign of tumor
formation, and (3) iPSC-NS/PCs that
are able to give rise to neurons, astro-
cytes, and oligodendrocytes exert their
therapeutic effects upon transplantation
(Miura et al., 2009; Tsuji et al., 2010;
Okano et al., 2013; (Figure 2a)). We are
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Figure 1. The skin provides a proving ground for human induced pluripotent stem cell (hiPSC) research. With its easy accessibility and high proliferative

capacity, the skin represents an attractive repository of materials for hiPSC generation. Conversely, hiPCSs can be differentiated into keratinocytes, melanocytes,

and dermal fibroblasts, which can be used for three-dimensional (3D) skin equivalent generation. hiPSCs also give rise to teratomas in which skin-like structures

were reproduced.
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aware that not all those issues are
directly applicable to iPSC-based treat-
ment of skin injuries or defects. Some
issues may be less important (for
instance, tumorigenicity of grafted
hiPSC-derived tissue is more easily
monitored in the skin). Nevertheless,
similar stepwise approach is required
to achieve clinical application of bioen-
gineered skin using hiPSCs.

iPSC-BASED TREATMENT FOR
GENODERMATOSES
Use of hiPSCs for cell-based treatment
of genodermatoses, in particular epider-

molysis bullosa (EB), has been attracting
great interest (Uitto, 2011; Figure 2b).
A previous report suggested that adult
KC stem cells might be exhausted in
EB patients because of continuous need
to repair wound (Mavilio et al., 2006).
As reprogramming rejuvenates adult
somatic cells, using hiPSC-derived cells
for EB treatment should be advantag-
eous. When, KCs or fibroblast derived
from recessive dystrophic EB patients
were corrected for collagen VII gene
mutation and subsequently repro-
grammed into iPSCs, recessive dystro-
phic EB-hiPSC demonstrated the ability

to differentiate into skin-like structure
(Tolar et al., 2011), suggesting that EB-
hiPSC may be used for treating chronic
wound in EB. More fascinating strategy
is to take advantage of revertant
mosaicism, in which a second spontan-
eous mutation in mutant cells cancels
the primary mutation to reverse the
phenotype to normal (Almaani et al.,
2010; Pasmooij et al., 2010; Figure 2b).
Generation of hiPSCs from revertant
cells should enable patient-specific
cell-based therapy for recessive dys-
trophic EB (Uitto, 2011). For small
wound, skin equivalent generated from
hiPSC-derived KCs and fibroblasts may
be grafted (Figure 2b). Revertant cell-
derived hiPSCs cells may also be
induced into mesenchymal stem cells
and infused into the circulation
to be recruited into the wound site to
differentiate into KCs or fibroblast to
produce normal collagen VII (Chino
et al., 2008; Fujita et al., 2010).

RECAPITULATION OF PATIENT
PATHOPHYSIOLOGY USING iPSCs
hiPSCs also enable the reproduction of
human disease pathophysiology. The
familial form of Parkinson’s disease,
PARK2, is caused by mutation in the
parkin gene, however, parkin-knockout
mice do not fully recapitulate the patho-
physiology of human PARK2. Interest-
ingly, when hiPSCs were generated from
PARK2 patients and differentiated into
neurons, they exhibited mitochondrial
dysfunction and a-synuclein accumula-
tion observed in PARK2 patient tissue
(Imaizumi et al., 2012). KCs isolated
from patient have been used to model
the disease in organotypic cultures
(König and Bruckner-Tuderman, 1994).
KCs differentiated from patient-derived
hiPSC should enable reproduction of
patient pathophysiology in living skin.
Indeed, three-dimensional skin equi-
valent generated with recessive
dystrophic EB-hiPSC lacked collagen
VII, therefore mimicking patient’s skin
(Itoh et al., 2011). With their pluri-
potentcy, hiPSCs may be extremely
useful for the investigation of patho-
mechanism of multi-organ diseases
affecting skin, such as pesudoxanthoma
elasticum or Ehlers–Danlos syndrome.
Thus, diseases models utilizing hiPSCs
for such disorders should provide
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Figure 2. Approaches to establish human induced pluripotent stem cell (hiPSC)-based therapies for

intractable disorders. (a) For the treatment of spinal cord injury (SCI), hiPSCs may be induced into neural

stem/progenitor cells and transplanted to the injured spinal cord to support tissue regeneration. As hiPSC-

derived tissue is permanently incorporated deep into the patient, the safety of transplanted tissue needs to

be secured by the series of animal studies in a stepwise manner using mouse and non-human primate SCI

models. (b) For the treatment of genodermatoses, especially epidermolysis bullosa (EB), gene correction is

an indispensable step. hiPSCs may be generated from the cells obtained from the site showing revertant

mosaicism or mutant cells were corrected for the gene mutation to generate hiPSCs. hiPSC-derived three-

dimensional (3D) skin equivalent can be generated and grafted onto chronic wound of EB patients. As

hiPSC-derived tissue is readily observable, the technique may be tried on human subjects, once long-term

safety is secured with mouse EB models.

M Ohyama and H Okano
iPS Cells and Skin Regeneration

www.jidonline.org 607

http://www.jidonline.org


powerful tools for better understanding
of their pathophysiology and pharmaco-
logical target discovery.

POSSIBLE STRATEGIES FOR SKIN
APPENDAGE REGENERATION
USING hiPSCs
Morphogenesis of skin appendages
depends on intensive and orchestrated
epithelial–mesenchymal interactions.
Previous study demonstrated embryonic
or neonatal human KCs more efficiently
generated hair follicle structure than
adult KCs, when combined with hair
inductive dermal cells in in vivo hair
reconstitution, suggesting that innate
state KC could better respond to induc-
tive signals (Ohyama and Veraitch,
2013). Technically, it is difficult to re-
condition adult KCs back into an
embryonic/neonatal state. However,
hiPSC-derived KC lineage cells with
high receptivity to dermal signals may
be obtained during the differentiation
from hiPSCs to terminally differentiated
KCs (Ohyama and Veraitch, 2013). To
support this hypothesis, hiPSC-derived
ectodermal precursors (hiPSC-EPCs)
expressing keratin 18 and partially
keratin 14 (thus, less committed to KC
lineage) more intensely crosstalk with
human dermal papilla cells than adult
KCs to express higher levels of hair-
related genes (Veraitch et al., 2013).
Importantly, hiPSC-EPCs, but not adult
KCs, contributed to hair follicle
structures in hair reconstitution experi-
ments (Veraitch et al., 2013). These
findings implied the advantage of
using hiPSC-derived cells to provoke
epithelial–mesenchymal interactions
sufficient for tissue bioengineering.

FUTURE OF IPSC-BASED MEDICINE
IN DERMATOLOGY
As described above, hiPSCs holds great
promise in dermatology. However,
hiPCSs should not be considered as
‘‘omnipotent’’ in every application. Of
note, safety issues need to be comple-
tely cleared for their use in clinics.
Generation of clinical-grade, integra-
tion-free, xeno-free, and more comple-
tely reprogrammed hiPSCs is definitely
necessary (Nakamura and Okano, 2013;
Okano et al., 2013). Some essential
techniques for skin regeneration and
transplantation have been already

established. Considered combination
of conventional approaches with iPSC
technology should accelerate the
advances in regenerative medicine and
facilitate new discoveries in the field of
skin biology.
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