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Abstract: Tens of millions of patients are affected by liver disease worldwide. Many of 

these patients can benefit from cell therapy involving living metabolically active cells, either 

by treatment of their liver disease, or by prevention of their disease phenotype. Cell 

therapies, including hepatocyte transplantation and bioartificial liver (BAL) devices, have 

been proposed as therapeutic alternatives to the shortage of transplantable livers. Both BAL 

and hepatocyte transplantation are cellular therapies that avoid use of a whole liver. 

Hepatocytes are also widely used in drug screening and liver disease modelling. However, 

the demand for human hepatocytes, heavily outweighs their availability by conventional 

means. Induced pluripotent stem cells (iPSCs) technology brings together the potential 

benefits of embryonic stem cells (ESCs) (i.e., self-renewal, pluripotency) and addresses the 

major ethical and scientific concerns of ESCs: embryo destruction and immune-incompatibility. 

It has been shown that hepatocyte-like cells (HLCs) can be generated from iPSCs. 

Furthermore, human iPSCs (hiPSCs) can provide an unlimited source of human hepatocytes 

and hold great promise for applications in regenerative medicine, drug screening and liver 

diseases modelling. Despite steady progress, there are still several major obstacles that need 

to be overcome before iPSCs will reach the bedside. This review will focus on the current 

state of efforts to derive hiPSCs for potential use in modelling and treatment of liver disease. 
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1. Introduction 

Tens of millions of patients are affected by liver disease worldwide. Liver transplantation, the 

ultimate cell therapy, is presently the only proven treatment for many medically refractory liver diseases 

including end-stage liver disease and many inherited liver diseases. However, there is a profound 

shortage of transplantable donor livers. Regenerative medicine, which focuses on innovative approaches 

to repairing and replacing cells, tissues and organs, is undergoing significant revolution do to the 

unprecedented world-wide demand for organs. Many of the liver disease patients can benefit from cell 

therapy involving metabolically active cells. Cell therapies, including hepatocyte transplantation and 

bioartificial liver (BAL) devices, have been proposed as therapeutic alternatives to the shortage of 

transplantable livers. BAL is an extracorporeal supportive therapy developed to bridge patients with 

liver failure to liver transplantation or to recovery of the native liver. Hepatocyte transplantation is best 

suited for patients with metabolic liver disease for which smaller number of cells (<10% of liver mass) 

may be curative. Both BAL and hepatocyte transplantation are cellular therapies that avoid use of a 

whole liver. Hepatocytes are also widely used in drug screening and liver disease modelling. However, 

conventional methods of obtaining hepatocytes cannot meet clinical demand because of the shortage of 

donor livers from which high quality hepatocytes can be isolated. Furthermore, hepatocytes are not 

easily maintained in culture over extended periods of time. Moreover, hepatocyte propagation is 

minimal in vitro, even in the presence of growth factors such as hepatocyte growth factor [1]. 

Hepatocytes are also difficult to cryopreserve and highly susceptible to freeze-thaw damage [2]. The 

demand for human hepatocytes, therefore, heavily outweighs their availability.  

The recent discovery that human induced pluripotent stem cells (hiPSCs) can be derived from human 

somatic cells through forced expression of defined transcription factors such as OCT4 (O), SOX2 (S), 

KLF4 (K), and c-MYC (M) (so called OSKM cocktail) or O, S, NANOG (N) and LIN28 (L) (so called 

OSNL), has renewed hopes for regenerative medicine and in vitro disease modelling, as these cells are 

easily accessible. iPSC technology brings together the potential benefits of embryonic stem cells (ESCs) 

(i.e., self-renewal, pluripotency) and addresses major ethical and scientific concerns of ESCs: (1) iPSCs 

bypass the ethical concerns of embryo destruction since they are produced from somatic cells in vitro 

without embryonic tissues or oocytes; (2) the immune-compatibility issues since they are generated from 

patient-specific cell types. The field of iPSCs has undergone tremendous growth, and differentiated cell 

types produced from a patient’s iPSCs have demonstrated many potential therapeutic applications, 

including their use in tissue replacement and gene therapy. It was shown that HLCs could be generated 

from iPSCs. Our previous study [3] and others’ reports [4] of the potential benefits of HLCs generated 

from hiPSCs have described their secretion of human albumin, alpha-1-antitrypsin (A1AT), and 

hepatocyte nuclear factor 4-alpha (HNF4α), synthesis of urea, and expression of cytochrome P450 

(CYP) enzymes in vitro. Therefore, in theory, hiPSCs could provide an unlimited source of human 

hepatocytes and hold great promise for applications in regenerative medicine, drug screening and liver 

diseases modelling. More recently, investigators have reported that HLCs differentiated from hiPSCs of 
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patients with the inherited metabolic conditions may be used to model inherited liver diseases [5]. 

Transplantation of HLCs derived from hiPSCs may provide alternatives to liver transplantation for the 

treatment of acute liver failure (ALF), liver cirrhosis, viral hepatitis, and the correction of inherited 

metabolic liver disorders. This review will focus on the current state of efforts to derive hiPSCs for 

potential use in modelling and treatment of liver disease. 

2. Hepatic Differentiation of iPSCs in Vitro 

We will first address the hepatic differentiation of iPSCs. The term HLCs refers to cells produced  

in vitro that possess some of the properties of mature hepatocytes. Song et al. [6] first demonstrated that 

hiPSCs can be induced to HLCs directly by the administration of various growth factors in a time 

dependent manner. The sequence of differentiation follows the normal sequence of human liver 

development, and includes: Stage 1-endoderm induction, Stage 2-hepatic specification, Stage 

3-hepatoblast expansion and Stage 4-hepatic maturation. Subsequent reports have focused on 

optimizing this method by adding modifications and improvements to the differentiation protocols. In 

addition to growth factors, a variety of factors have been used to enhance the differentiation of hiPSCs 

towards the hepatic lineage. For example, small molecules (i.e., dimethyl sulfoxide (DMSO), 

dexamethasone) have been shown to extend the hepatic differentiation of iPSCs. The characteristics of 

pluripotent stem cell derived HLCs produced from various differentiation protocols have been 

critically reviewed [7]. Zhang et al. induced efficient generation of highly differentiated HLCs from 

mouse iPSCs by a combination of cytokines and sodium butyrate [8]. To promote hepatic maturation, 

Takayama utilized transduction of the hepatocyte HNF4α gene, which is known as a master regulator 

of liver-specific gene expression. Over expression of HNF4α in hepatoblasts derived from iPSCs led to 

up-regulation of markers of epithelial and mature hepatic development, such as CYP enzymes. HNF4α 

also promoted hepatic maturation by activating the mesenchymal-to-epithelial transition. The Takayama 

method is also a valuable tool for the efficient generation of functional hepatocytes derived from 

human ESCs and iPSCs, and these HLCs have been used for predicting drug toxicity [9]. A limitation 

of these four-stage protocols is that they are time consuming, usually requiring more than 20 days.  

In contrast, Chen [10] reported rapid generation of HLCs from hiPSCs by an efficient three-step 

protocol. Using Chen’s system, the differentiation of hiPSCs into functional HLCs requires only  

12 days. Chen’s method is different from the typical protocols as they apply HGF in the first stage 

(endoderm induction), rather than during the hepatocyte maturation stage. It is expected that future 

research will facilitate the differentiated of iPSCs to fully mature functional hepatocyte. 

3. Applications of iPSCs in Liver Diseases 

The applications of iPSCs in liver diseases will be outlined in the Table 1. 

3.1. Regenerative Medicine 

iPSCs-Derived HLCs from normal individuals can be used in the establishment of cell banks for 

applications in regenerative medicine. Results from various studies have demonstrated the therapeutic 

potential of iPSCs-derived HLCs in liver diseases. Examples of the therapeutic potential of 
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iPSC-derived HLC’s in rodent models include vivo transplantation of HLCs to reverse lethal fulminant 

hepatic failure [10], both the functional and proliferative potential of HLCs for enhanced liver 

regeneration [11], reduced liver fibrosis [12], and stabilization of chronic liver disease [13]. Disease 

models have utilized immunodeficient mice and immunosuppression to demonstrate a therapeutic 

benefit of human HLC’s. For human application, generating hiPSC-derived HLCs from selected adults 

and construction of libraries of cell lines with known genotypes, providing patients with a close 

HLA/MHC match, may minimize the need for immunosuppression to achieve cell engraftment. hiPSCs 

also introduce the possibility of patient-derived HLCs which will be discussed later. 

Table 1. Applications of iPSCs in liver diseases. 

Applications Diseases iPSCs from Donor References 

Regenerative 
Medicine 

fulminant hepatic failure mouse normal iPSCs [10] 
liver regeneration mouse normal iPSCs [11] 

liver fibrosis mouse normal iPSCs [12] 
chronic liver disease mouse normal iPSCs [13] 

BAL liver failure human normal iPSCs [14] 

Gene Therapy 
A1AT deficiency A1AT deficiency patient iPSCs [15] 

WD WD patient [16] 

Liver Diseases 
Model 

HBV, HCV human normal iPSCs [17] 
HCV human normal iPSCs [18,19] 

A1AT deficiency  
GSD, FH, Crigler-Najjar 

syndrome, hereditary 
tyrosinemia 

patients iPSCs [5,20] 

Drug Discovery 
and Hepatoxicity 

Screening 
Normal liver 

patients iPSCs or human  
normal iPSCs 

[5,21–25] 

3.2. BAL 

The incidence of ALF is approximately 2500 cases per year in the United States and is much higher 

worldwide [26]. The shortage of liver donor for transplantation leads to approximately 40% of listed 

patients per year not receiving a liver transplant with a significant number of these patients either dying 

or becoming too sick to transplant. BAL is an extracorporeal supportive therapy developed to bridge 

patients with liver failure to liver transplantation or to recovery of the native liver. The BAL system 

removes toxins by filtration or adsorption (artificial liver) while performing biotransformation and 

synthetic functions of biochemically active hepatocytes. A major question in the clinical application of 

liver support devices is how to supply them with adequate numbers of functional hepatocytes to improve 

patient survival. Fortunately, cells in the BAL are separated from the patient’s circulation by a 

semi-permeable membrane to prevent allogenic rejection, thus patient-specific hepatocytes are not needed. 

To date, the various cell types that have been used in BAL devices have included primary human 

hepatocytes, primary porcine hepatocytes, immortalized human cell lines, fetal liver cells, and stem 

cell-derived cells. Primary human hepatocytes are not available in sufficient amounts needed for clinical 

usage of BAL, exceeding 200 grams per treatment. Furthermore, primary hepatocytes are limited by the 
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short duration that they retain functionality and viability in vitro. Porcine hepatocytes are limited by 

immunogenic reactions resulting from the xenogenicity of porcine hepatocyte products and the 

possibility of xenozoonotic retroviral infection of patients with porcine endogenous retrovirus (PERV). 

However, the BAL membrane mitigates these concerns (the risk has never been quantified since no 

cases exist). Also of concern, immortalized cell lines lack essential functions, particularly the loss of 

urea cycle activity and lack of CYP enzyme expression [27]. Transfection methods to enable 

overexpression of CYP enzymes in these cells have been adopted, but this approach is limited by the 

expression of one CYP isoform per cell line and therefore does not fully recapitulate the metabolic 

capacity of a fully functional hepatocyte [28]. Alternatively, human ESCs and iPSCs differentiated 

HLCs show great promise as cell sources for BAL devices. Patient specific iPSCs-HLCs transplantation 

can provide effective treatment to liver diseases. Of concern in acute situations, such as ALF, time to 

make, mature, and expand the patient’s somatic cells into iPSCs and then HLCs may be prohibitive for 

treatment of ALF, either as a cell transplant or BAL therapy. The cell banks of normal 

individual-derived iPSCs with close HLA/MHC match to the ALF patient and then rapid differentiation 

into HLCs for use in BAL and temporary treatment of ALF deserves further investigation. 

The Fox group has reported an implantable BAL device containing HLCs derived from ESCs in a 

murine model of liver failure [29]. They differentiated mouse ESCs into HLCs by coculture with a 

combination of human liver nonparenchymal cell lines and cytokines. Functional hepatocytes were 

isolated using albumin promoter-based cell sorting. The coculture differentiation strategy induced a 50% 

increase in the number of ESCs becoming albumin positive, and resulted in 68.7% of the entire cell 

population differentiating toward a hepatocyte phenotype. This may be due to the heterotopic 

interactions between hepatocytes and hepatic nonparenchymal cells in liver development. Treatment of 

90% hepatectomized mice with a subcutaneously implanted BAL seeded with ESCs-derived HLCs 

improved liver function and prolonged survival. Iwamuro [14] tested a BAL system whose cell source 

was HLC’s derived from mouse iPSCs. These cells were injected into a hollow fiber module with a 

0.2-μm pore size. The murine HLC’s adhered to the hollow fiber surface and produced albumin and urea 

for 7 days. Although further investigation and improvement of the device and the differentiation process 

are required, the authors concluded that the combination of a 0.2-μm pore membrane and iPSC-derived 

HLCs showed promise as an improved BAL system. This paper provides the basic concept and 

preliminary data for BAL as an individualized treatment system employing the patient’s own cells. 

Despite the paucity of reports addressing functionality of HLCs derived from hiPSCs in BAL systems, 

we believe hiPSCs-HLCs are a promising resource for BAL therapy. 

3.3. Gene Therapy in Hereditary Liver Disease 

The liver is affected by many types of diseases, including inherited metabolic disorders. A major 

indication for hepatocyte transplantation is inherited metabolic liver diseases in children. The liver is a 

vital organ that represents a promising target for cell therapy, because of its ability to functionally 

integrate transplanted hepatocytes. Hepatocyte transplantation has been performed as a treatment for 

inherited liver diseases, either for bridging to whole organ transplantation or for long-term correction of 

the underlying metabolic deficiency [30]. However, as mentioned earlier, the both shortage of donor 

organs from which to isolate high quality primary hepatocytes and the possibility of allogeneic rejection 
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hamper the advance of hepatocyte transplantation. Patient-specific cell therapy is an ideal option to 

prevent cell rejection. However, isolation of autologous hepatocytes requires a lobectomy (resection of 

at least 20% of the liver), a procedure with risk in patients. Fortunately, development of iPSCs from 

patient somatic tissues and then differentiation into HLCs may provide patient specific hepatocyte 

source for treatment for inherited liver diseases. In the case of monogenic inherited metabolic liver 

diseases, in which all the cells from the body initially carry the disease-causing mutation in their 

genomic DNA, a gene correction approach is required to generate disease-free autologous cells. Thus, a 

combination of ex vivo gene therapy and cell transplantation has been considered [31,32]. 

iPSC-based gene/cell therapies have been applied in several animal models of liver-based metabolic 

disorders, with encouraging results. Yusa performed targeted gene correction of A1AT deficiency in 

iPSCs [15]. Mutation in A1AT gene is most commonly associated with Pizz-associated liver disease 

leading to cirrhosis. These investigators used the combined method of zinc finger nucleases (ZFNs) and 

piggyBac (PB) technology in hiPSCs to achieve biallelic correction of the culprit point mutation 

(Glu342Lys) in the A1AT gene. Genetic correction of hiPSCs restored the structure and function of 

HLC’s in vitro and subsequently corrected A1AT in vivo. Transplantation of these iPSC-derived HLCs 

into immunodeficient mice was able to produce albumin and provide functional A1AT protein. This 

approach is significantly more efficient than other gene-targeting technology currently available, and 

does not require homologous recombination that leaves residual sequences in the targeted genome, and 

which leads to unintended consequences. These studies provide the first proof of principle that 

combining genetic correction in hiPSCs will generate clinically relevant cells for autologous  

cell-based therapies.  

Wilson’s disease (WD) is an autosomal recessive inborn error of copper metabolism. Mutations in the 

ATP7B gene (located in chromosome 13) are responsible for WD with a prevalence of 1 in 

30,000–100,000 [33]. Zhang et al. [16] described the generation of iPSCs from a Chinese patient with 

WD bearing the R778L “Chinese hotspot” mutation in the ATP7B gene. These iPSCs were pluripotent 

and could be readily differentiated into HLCs that displayed abnormal cytoplasmic localization of 

mutated ATP7B and defective copper transport. This phenomenon is susceptible to correction using a 

chaperone drug. Gene correction was performed in HLCs using a self-inactivating lentiviral vector that 

expresses codon optimized-ATP7B. The newly produced HLCs reversed the functional defect in vitro. 

Hence, their work describes an attractive model for studying the pathogenesis of WD that is valuable for 

screening compounds or gene therapy approaches aimed to correct the abnormality. This approach may 

be used for other diagnosis and correction of diseases susceptible to gene therapy. Genetically corrected, 

characterized lines of patient-specific iPSCs can be obtained in 4–5 months [34]. 

3.4. iPSCs in Liver Diseases Model 

Liver tissue from patients is difficult to obtain and only reveals the disease aftermath, so several 

genetic disorders have been modeled in rodents and large animals [7]. Although these models of human 

inherited metabolic disease are invaluable, they provide a limited representation of human 

pathophysiology [35]. Animal models, especially those in rodents, do not always faithfully mimic 

human diseases, and most are imperfect [7]. Therefore, new advances in experimental techniques are 

needed to develop new models of human liver disease, especially large animal models that may be of 
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greater clinical relevance [36]. Transplantation of hiPSCs into immunodeficient pigs with formation of 

humanized xenografts offers great potential [37]. 

3.4.1. iPSCs from Normal Individuals 

Disease modelling and drug screening are two immediate applications of the reprogramming 

technology and the resulting iPSCs differentiated cells. hiPSCs offer the ability to produce host-specific 

differentiated cells and thus have the potential to transform the study of infectious disease. HLCs derived 

from hiPSCs are particularly important for patients with liver diseases who cannot undergo surgical 

biopsy for the isolation of hepatocytes for transplantation. Disease modelling using iPSCs has been 

achieved for a variety of genetic diseases [38].  

Research on HBV or HCV has been hampered by difficulty in culturing human primary hepatocytes, 

which tend to dedifferentiate and lose hepatic function after a limited time in vitro. Thus, alternative 

models have been used. In vitro models using animal hepatocytes, human HCC cell lines, or in vivo 

transgenic mouse models have contributed to understanding the pathogenesis of HBV and HCV [17]. 

However, host tropism of HBV or HCV is limited to human and chimpanzee. HBV and HCV infection 

has never been fully understood because there are few conventional models for hepatotropic virus 

infection. hiPSCs-derived HLCs from normal individuals would be useful for modelling susceptibility to 

infectious diseases. These hybrid cells provide an opportunity to elucidate the genetic basis of the 

mechanisms underlying cell susceptibility or resistance to viruses. In particular, HLCs derived from 

iPSCs of normal subjects are an appropriate target for studying the interactions between the host and 

virus with hepatic tropism.  

HCV is a prototypic pathogen for which host genetic factors have been implicated in modulating 

disease natural history and treatment response but whose functions remain poorly understood because of 

the lack of robust experimental systems. Yoshida [18] group investigated the entry and genomic 

replication of HCV in iPSCs-derived HLCs by using HCV pseudotype virus (HCVpv) and HCV 

subgenomic replicons, respectively. They showed that iPSCs-derived HLCs, but not iPSCs, were 

susceptible to infection with HCVpv. The iPSCs-derived HLCs expressed HCV receptors. HCV RNA 

genome replication occurred in the iPSCs-derived HLCs. Anti-CD81 antibody, an inhibitor of HCV 

entry, and interferon, an inhibitor of HCV genomic replication, dose-dependently attenuated HCVpv 

entry and HCV subgenomic replication in iPSCs-derived HLCs, respectively. These findings suggest 

that iPSCs-derived HLCs are suitable in vitro models of hepatocytes for the study of HCV infection. 

Schwartz reported that hiPSC-derived HLCs support the entire life cycle of HCV [19], including 

inflammatory responses to infection, enabling studies of how host genetics impact viral pathogenesis. 

Such models will advance our understanding of host–pathogen interactions and help realize the potential 

of personalized medicine. 

3.4.2. iPSCs from Patients 

Monogenic metabolic disorders of the liver are an ideal platform to explore the complexity of 

gene–environment interactions and the role of genetic variation in the onset and progression of liver 

disease. The use of human hepatocyte cultures may circumvent the problems of animal models of human 

diseases in some sense. Many traditional cell-based models have been used to study pathogenesis and to 
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screen for candidate drugs. However, none has used symptom-relevant human cell types since these 

cells are difficult to obtain, and under monolayer culture conditions hepatocytes lose their liver specific 

functions within a few days. Disease-relevant cell types could accurately reflect disease pathogenesis  

in vitro. iPSCs generated from patients who have monogenic inherited liver diseases and HLCs derived 

from iPSCs can be used as instruments to study the pathogenesis, disease mechanism(s) and possible 

cures for inherited liver disorders. 

Current animal models of WD, including the toxic milk mouse, ATP7B2/2 mouse and Long-Evans 

Cinnamon rat, have provided very useful representation concerning its pathogenesis. However, 

physiological differences in phenotype between species limit the conclusions. As mentioned earlier, 

Zhang reported establishment of an in vitro disease model using iPSCs from WD patients [16].  

Recently, several liver-specific disease iPSCs, such as familial hypercholesterolemia (FH), glycogen 

storage diseases (GSD), Crigler-Najjar syndrome, A1AT deficiency and FH have been launched [5,20]. 

These cells can be used as suitable specific models to study the pathogenesis, mechanism(s) and possible 

treatment for inherited liver disorders. 

Rashid et al. demonstrate the possibility of modeling groups of diseases whose phenotypes are a 

consequence of complex protein dysregulation within adult cells. They derived iPSCs from the skin 

fibroblasts of patients with A1AT deficiency, GSD type 1a, FH, Crigler-Najjar syndrome type 1 and 

hereditary tyrosinemia. These iPSCs were then differentiated into HLCs, and characterized with special 

attention to the phenotypic properties specific to the corresponding diseases [5]. Rashid et al.’s results 

demonstrated that hiPSCs-derived HLCs can be generated from multiple patients of varied genetic and 

disease backgrounds. Their system has proved to be an efficient methodology for screening of 

early-stage safety and therapeutic effect of liver-targeted compounds of potential relevance to the 

pharmaceutical industry.  

Ghodsizadeh [20] derived iPSCs from liver-specific patients with tyrosinemia, GSD, progressive 

familial hereditary cholestasis, and two siblings with Crigler-Najjar syndrome. The hepatic 

lineage-directed differentiation of the iPSCs showed that the HLCs expressed hepatocyte-specific 

markers. Functionality of these cells was confirmed by glycogen storage and lipid storage activity, 

secretion of albumin, alpha-fetoprotein, and urea, CYP metabolic activity, as well as LDL and 

indocyanine green uptake. The large array of iPSCs lines produced in these studies will permit more 

in-depth characterization of disease phenotypes. The patient-derived HLCs from iPSCs can also be used 

as suitable specific models to study the pathogenesis, mechanism(s) and possible treatment for inherited 

liver disorders. 

3.5. In Drug Discovery and Hepatoxicity Screening 

An added benefit of iPSCs is that they can be used for drug screening. Adverse drug reactions 

continue to pose a major problem to the clinician, the pharmaceutical industry and the regulatory 

authorities. Amongst the different types of adverse drug reactions, drug-induced liver injury (DILI) is 

the most prominent cause of patient morbidity and mortality. Thus, a multitude of new drugs need to be 

efficiently screened every year to assess their potential for toxicity. A major challenge for drug 

discovery is to develop appropriate preclinical models. Human primary hepatocytes have become a 

major liver model for hepatotoxicity tests. Unfortunately, as mentioned above, there is also a shortage of 
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primary hepatocytes, and it is difficult to culture the hepatocytes in vivo without losing their depth and 

breadth of specialized functions, and their limited availability, inter-donor differences, variable viability 

following isolation and rapid dedifferentiation of the hepatocyte phenotype in culture, particularly in the 

loss of CYP enzyme expression, impede their use. The pluripotent nature and the indefinite proliferative 

potential of ESCs are two major detractions of using ESCs in safety research in the fields of 

pharmacology and toxicology. However, directed differentiation of human ESCs to mature hepatocyte 

phenotypes in vitro could provide a readily available source of hepatocytes for early stage safety testing. 

Today, approximately 70% of the top 20 pharmaceutical companies utilize stem cells in their research 

and among these, 64% use human ESCs or their derivatives. Human ESCs and their derivatives do not 

encompass all the variances within a population or between ethnicities. Alternatively, ideal cells for drug 

screening could be obtained from iPSCs-derived HLCs. Since cells from patients with many different 

metabolism phenotypes must be tested to establish safety, hiPSCs-derived HLCs from this wide range of 

patients are expected to improve the drug discovery process [5,21] and may lead to personalized drug 

administration. Specifically, iPSC-hepatocytes generated from individuals with different CYP 

polymorphisms would be of great value for study of drug metabolism and toxicity prediction of new 

drugs [7]. Moreover, iPSCs offer the opportunity to generate liver cells at different stages of maturation, 

as well as the potential to give rise to all the composite cells of the adult liver, which may provide  

extra advantages and substantially expand the scope of traditional studies in drug metabolism and 

toxicology [22]. Choi et al. used patient-specific iPSCs, screened the clinical-ready drug library (the 

JHDL), and identified and validated several hits for novel treatment of A1AT deficiency. With emerging 

new tools and technologies for gene manipulation, such as transcription activator-like effector nucleases 

(TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs), the feasibility of 

iPSC-based large-scale drug screening and highly efficient gene correction are anticipated. Integration 

of patient-specific iPSC-based screening in early stages of drug development will help to more 

accurately predict drug effects in humans, thereby significantly shortening the timeline and reducing the 

costs associated with clinical trials and high failure rates [23]. In view of the potential of hiPSCs in 

providing an alternative model for safety pharmacology and toxicology applications, many 

pharmaceutical and biotechnology companies in recent years have invested or have developed joint 

collaborations with academia, to develop in vitro systems based on hiPSCs [24]. Moreover, the potential 

to make genetically corrected hiPSCs from a diverse number of diseases and genetic subtypes also 

allows for the development of reliable models for studying the development and progression of genetic 

diseases in vitro [23,25]. For example, disease-causing gene mutation and/or correction of hiPSCs offer 

ideal controls for comparative studies of pharmaceutical agents in vitro. 

4. Challenges of iPSCs Application 

4.1. Large Expansion System of iPSCs 

A major technical hurdle that must be overcome before iPSCs can be implemented clinically is 

scalability, referring to the reproducible production of cells and their differentiated progeny on a large 

scale. All of the iPSCs lines established thus far have been generated and expanded under static tissue 

culture protocols, which are time-consuming and suffer from batch-to-batch variability. Additionally, 
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monolayer culture provides limited numbers of iPSCs, only sufficient for research. Therefore, large 

scale systems for rapid expansion and maintenance of iPSC’s and their differentiated progeny are 

required for further research as well as future clinical applications. 

Shafa reported expansion and long-term maintenance of iPSCs in a stirred suspension bioreactor 

(SSB) [39]. Their study showed that murine iPSCs can be maintained and expanded in SSB without loss 

of pluripotency over a long-term period. Kehoe also reported scalable SSB culture of hiPSCs [40]. They 

demonstrated SSB cultured iPSCs as aggregates, and the iPSCs aggregates retained the ability to express 

pluripotency markers, as well as the potential for multi-lineage differentiation in vitro and in vivo. Chen 

described the use of microcarriers (MCs) in suspension culture bioreactors for iPSCs cultivation [41]. 

Such a 3-dimensional culture system represents an efficient process for the large-scale expansion and 

maintenance of iPSCs, which is an important first step in their clinical application. 

4.2. Immaturity of the HLCs Derived from iPSCs 

Prior to clinical application, HLCs derived from iPSCs must be compared to primary liver-derived 

cells and shown to have similar morphology and functional properties such as nutrient processing, 

detoxification, plasma protein synthesis, and engraftment after transplantation into a suitable animal 

model. While a wealth of studies highlight the promise of iPSC-derived HLCs for transplantation 

therapies, several obstacles remain. So far, neither ESCs nor iPSCs can differentiate to fully mature 

hepatocytes in vitro. Researchers have then termed such populations of cells derived from iPSCs or 

ESCs as hepatocyte-like cells or “HLCs”. HLCs indicates that only some of the properties of mature 

hepatocytes are present. In general, HLCs demonstrate lower rates of albumin production, incomplete 

urea cycle activity, lower CYP activity, immature mitochondria and lower oxygen consumption than 

primary hepatocytes [3]. HLCs also show persistent expression and high levels of AFP production, 

suggesting that HLCs exhibit an inability to turn off early stage gene(s) as the mechanism of persistent 

immature phenotype [42]. Moreover, despite recent advances, the efficiency of human ESCs and iPSCs 

directed-differentiation into HLCs is highly variable and cell line-dependent. Since the undifferentiated 

iPSCs have the potential to form teratoma, research must be actively pursued to gain more information 

in order to clearly delineate the differentiation pathways of iPSC into specific cell types to ensure similar 

function and physiology.  

To address the issue of maturation of HLCs from iPSCs, Ogawa [43] used a method of modified 

growth factor and a 32-day 3D differentiation to show that the combination of 3D cell aggregation and 

cAMP signaling enhanced the maturation of hiPSCs-derived hepatoblasts to a hepatocyte-like 

population. The resulting cells displayed expression profiles and metabolic enzyme levels comparable to 

those of primary human hepatocytes. Importantly, they also demonstrated that generation of the 

hepatoblast population capable of responding to cAMP is dependent on appropriate activin/nodal 

signaling in the definitive endoderm at early stages of differentiation. Together, these findings provide 

new insights into the pathways that regulate maturation of iPSCs-derived HLCs. In doing so, they 

provide a simple and reproducible approach for generating metabolically functional hepatocytes. 

Shan [44] used a screening approach involving two different classes of small molecules to identify 

factors that induce the proliferation of mature primary human hepatocytes or induce the maturation of 

HLCs from hiPSCs. The first class induced functional proliferation of primary human hepatocytes  
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in vitro. The second class enhanced hepatocyte functions and promoted the differentiation of 

iPSCs-derived HLCs toward a more mature phenotype than what was previously obtainable. Gene 

expression profiles showed that HLCs treated with small molecules more closely resembled  

mature hepatocytes. Marked increases in the amount of albumin and CYP3A were seen with treated  

cells vs. untreated cells. Of particular interest, AFP was largely absent in treated cells. The identification 

of these small molecules may have an impact on several areas of research, including maturation of other 

iPSCs-derived cell types, expansion of other “terminally” differentiated cell types, and the translational 

potential of these cell types.  

Zhang et al. [8] directly compared the hepatic-differentiation capacity of mouse iPSCs with three 

different induction approaches: conditions via embryonic body formation plus cytokines, conditions by 

combination of DMSO, and sodium butyrate, and chemically defined N2B27 medium, serum free 

monolayer conditions. In the mid-term induction stage, the investigators added sodium butyrate, a 

short-chain fatty acid and a histone deacetylase inhibitor. Sodium butyrate has been reported to induce 

growth arrest, differentiation, and apoptosis of cancer cells in chemically defined, serum free medium. 

Among these three induction conditions, more homogenous populations can be promoted under serum 

free conditions. Although efficient hepatic differentiation was achieved by these modifications, the 

present protocols are far from perfect. Further optimization is needed for clinical application of 

iPSCs-derived HLCs. Efforts are underway to define an ideal hepatic induction strategy for future 

individualized hepatocyte transplantation. 

The induction of HLCs from iPSCs is a complicated process that will eventually be replaced by less 

complex technology. Huang et al. demonstrated the direct induction of functional HLCs (named as 

iHep cells) from mouse tail-tip fibroblasts. Direct induction was accomplished by single step 

transduction of Gata4, Hnf1a and Foxa3, and inactivation of p19Arf. iHep cells show typical epithelial 

morphology, express hepatic genes, and perform hepatocyte functions. Notably, iHep cells showed an 

expression profile and hepatic function very similar to mature hepatocytes. Donor iHep cells 

repopulate the livers of FAH-deficient mice and rescued almost half of recipients from death by 

restoring liver functions. More importantly, iHep cells did not form tumors in immunodeficient mice. 

Their study provides a novel strategy to generate functional HLCs for the purpose of liver  

regenerative medicine [45]. 

4.3. Strategies to Purify the HCLs Differentiated from iPSCs 

Under current situations, transplantation of differentiated iPSCs into patients is risky as the residual 

undifferentiated iPSCs may retain the possibility of tumor formation. Therefore, the safety of clinical 

cell transplantation using differentiated hiPSC derivatives is contingent on novel methods to remove  

the undifferentiated iPSCs [46]. To date, strategies for purifying a given cell population have used  

either a cell surface protein specific for the target cell population, such as a cell surface marker specific 

to hepatic progenitors, or lentivectors expressing a reporter gene under the control of a specific  

promoter [47]. For example, to purify HLCs from a heterogeneic population, elegant experiments by 

Basma et al. [48] generated human HLCs through embryoid bodies. These cell aggregates were purified 

using fluorescence-activated cell sorting for the asialoglycoprotein receptor. Purified epithelial cell 

adhesion molecule EpCAM-positive cells from fetal and postnatal livers have also been used to generate 
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mature hepatocytes [49]. The EpCAM marker is also expressed in the visceral endoderm and in several 

progenitor cell populations and cancers, and is associated with undifferentiated hESCs [50,51]. 

Therefore, to date, purification of progenitors and mature cells generated from either ESCs or iPSCs 

remains challenging with use of conventional methods. More studies need to be carried out to develop 

better purification methods before iPSC can be used clinically.  

Yang et al. [52] reported the use of lentivectors encoding green fluorescent protein (GFP) driven by 

the liver-specific apoliprotein A-II (APOA-II) promoter to purify human hepatic progenitors. The 

investigators first differentiated a human ESC line into hepatic progenitors using a chemically defined 

protocol. Subsequently, cells were transduced with GFP and sorted at day 16 of differentiation to obtain 

a cell population enriched in hepatic progenitor cells. After sorting, more than 99% of these 

APOA-II-GFP-positive cells expressed hepatoblast markers such as AFP and cytokeratin 19. When 

cultured for an additional 16 days, the sorted hepatoblasts underwent differentiation into more mature 

cells and exhibited hepatocyte properties such as albumin secretion. Moreover, they were devoid of viral 

DNA integration. Their strategy produces a novel tool that could be used not only for cell therapy but 

also for in vitro applications such as drug screening. The present strategy should also be suitable for the 

purification of a broad range of cell types derived from either iPSCs or adult stem cells. 

4.4. Low Efficiency of Engraftment 

Functionality of human cells differentiated in vitro is currently best tested by transplantation into 

immunodeficient rodent models. However, low efficiency of engraftment and proliferation of 

transplanted cells into the host parenchyma is a limitation that must be considered. Alternatively, a 

selective growth advantage of donor cells over endogenous cells may address this limitation. For 

example, in some models, the survival and/or proliferation of native hepatocytes is impaired by a genetic 

or inherited inability to regenerate, as in fumarylacetoacetate hydrolase (FAH)-deficient mice and 

urokinase (Alb-uPA) transgenic mice [53,54]. These two murine models have been crossed with 

immunodeficient mice with a different genetic background [1]. Even with a suitable animal model, 

human HLCs generated from pluripotent or multipotent stem cells currently repopulate transplanted 

livers less efficiently than primary human hepatocytes [55]. These results suggest that fully mature 

donor HLCs may achieve higher engraftment efficiency. 

4.5. EP Cell Lines from iPSCs 

Besides the high variability and efficiency of differentiation, the pluripotent nature of ESCs and 

iPSCs results in production of cells types from different germ layers in most differentiation protocols. 

Thus, it is difficult to produce pure monolineage cultures of a desired cell type from iPSCs [56]. An 

effective method to direct iPSCs differentiation is to use an established definitive germ layer stem cell 

line, such as a definitive endoderm (DE) progenitor line. The spectrum of differentiation of definitive 

germ layer stem cells is relatively narrow. Thus, the efficiency of directional differentiation from 

definitive germ layer stem cells to a specific cell type can be increased. On the other hand, definitive 

germ layer stem cells have broader differentiation potential than tissue stem cells, which is economical. 

Furthermore, definitive germ layer stem cell lines are less tumorigenic than ESCs and iPSCs. Endoderm 
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stem cells can differentiate to the liver, pancreas, intestines, stomach, lung and other organs cells, but not 

teratomas. Therefore, endoderm stem cells have potential in clinical application. 

As noted earlier, differentiation from iPSCs toward hepatic lineage cells mimics in vivo step-wise 

developmental processes. Therefore, hiPSCs-derived hepatic progenitor-like cells (HPCs) might exist at 

an appropriate time point during similar in vitro differentiation steps. Yanagida reported that after 

differentiating with defined cytokines, HPCs from hiPSCs can be highly purified using cell surface 

markers CD13 and CD133. Further investigation revealed that hiPSCs-derived HPCs exhibit a 

long-term proliferative potential and maintain bipotent differentiation toward hepatocytic cells and 

cholangiocytic cells [57]. Their human HPCs derived from iPSCs may be useful for the analysis of 

human hepatic cell development. In addition, mature hepatocytes lose proliferative ability after 

cryopreservation. In contrast, hiPSCs-derived HPCs have a highly proliferate ability even after 

cryopreservation. Thus, the in vitro expansion system of HPCs may contribute to regenerative therapies 

of liver diseases using functional human hepatic progenitor cells and hepatocytes.  

Recently, Cheng et al. [58] generated self-renewing DE progenitor lines from both human ESCs and 

iPSCs. These cells, termed endodermal progenitor (EP) cell lines, displayed a proliferative capacity 

similar to ESCs, yet lacked teratoma-forming ability. In addition, EP cell lines generated endodermal 

tissues representing liver, pancreas, and intestine, both in vitro and in vivo. EP cell lines provide a 

powerful reagent to study gut tissues from a common multipotent endodermal progenitor and to 

optimize monolineage differentiation. Moreover, creation of EP cells from ESCs/iPSCs may represent a 

strategy to optimize the production of pure, non-tumorigenic cells for tissue replacement therapies. 

4.6. Large Expansion System of HLCs and Engineering Liver with iPSCs 

Large scale production of HLCs is needed for their clinical application. As mentioned earlier, generation 

of HLCs from iPSCs is very time consuming under monolayer culture conditions. Vosough [59] 

reported their generation of functional HLCs from hiPSCs in a scalable suspension culture with 

rapamycin for “priming” and activin A for induction. After transplantation of these HLCs into the 

spleens of mice with acute liver injury, an increased rate of survival was observed. Improved survival 

correlated with cell engraftment in the liver and hepatic function (i.e., albumin secretion after 

implantation). This novel enrichment strategy provides a new platform for generating HLCs, and it may 

open new windows in the clinical and pharmaceutical application of these cells. 

It has been shown that the efficient function of multiple cell types, including hepatocytes and islet 

hormone-producing cells, is dependent on matrix-producing cells and endothelial cells that provide a 3D 

support structure and sufficient vascularization [60–62]. Thus, the liver extracellular matrix presents an 

ideal scaffold for stem-cell differentiation into hepatocytes [63,64]. It is known that local environmental 

factors induce hepatocyte homing, differentiation, and proliferation, and studies indicate that stem cells 

may differentiate toward mature hepatocytes following transfer into an injured liver. Therefore, the 

decellularized liver matrix has significant potential as the scaffold for hepatocyte maturation. This 

process may be further promoted by the sequential delivery of factors involved in the initiation and 

maturation of stem cells to liver cells [48], allowing temporal and spatial control over differentiation. 

Hannan [65] described a 25-day protocol to direct the differentiation of human pluripotent stem cells 

into a near homogenous population of HLCs. They demonstrated that day 25 of this protocol represents 
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the earliest time point at which cells can be used to model basic hepatic metabolic function. However, 

cells differentiated at day 35 systematically displayed the highest level of albumin secretion and CYP 

activity, suggesting that the later date was optimal for functional analyses and toxicology screening. 

This delayed approach enables the generation of a larger quantities of hESCs/hiPSCs for differentiation 

into hepatocyte-like cells and their clinical applications. 

4.7. In Vivo Differentiation of iPSCs 

Because even a small number of undifferentiated cells can result in teratoma formation, a goal of 

iPSCs differentiation is to avoid production of undifferentiated cells. To date, no iPSCs-derived 

differentiation protocol has succeeded in yielding high purity HLCs that fulfill both functional 

engraftment and response to proliferative stimuli in the diseased liver. Alternative strategies are needed 

to obtain mature hepatocytes. To exclude compensation by hepatocytes not derived from iPSCs, Espejel 

et al. transferred wild-type mouse iPSCs into the embryos of FAH-deficient mice to generate chimeric 

mice. These mice demonstrated the ability of iPSCs to develop into hepatocytes in vivo. Furthermore, 

recipient FAH-deficient mice were protected from developing hepatic failure [11]. Zhao also produced 

mice using iPSCs and tetraploid complementation [66], which can provide the liver organ for 

engineering liver. The tumor formation potential of these cells has not been completely eliminated.  

Takebe and his team grew bioengineered liver tissue from hiPSCs by reprogramming human skin 

cells to an embryo-like state. The researchers first placed the iPSCs on growth plates in a custom 

medium. After nine days, the mature cells were characterized by biochemical markers as hepatocytes. 

Umbilical endothelial cells and mesenchymal cells were then added to the culture system to induce 

formation of blood vessels and stroma, respectively. Two days later, 3D tissues of 5 mm width were 

observed, which the researchers described as a “liver bud” at an early stage of liver development [67]. 

The liver-buds were transplanted and examined histologically at multiple time points. Of the cells from 

the hiPSC-derived liver buds, 32.9% are albumin positive. These buds quickly attached to nearby blood 

vessels and grew rigorously after transplantation. The vascular networks of liver buds were similar in 

density and morphology to those of adult livers after transplantation.  

Chan reported that they directly transplanted iPSCs into CCl4-induced liver injured mice [68]. They 

found that mice with transplants of iPSCs performed better than mice with transplants of iPSCs-derived 

HLCs. Performance was assessed by levels of serum alanine aminotransferase, aspartate aminotransferase, 

and liver necrosis. The protective effects of iPSCs were associated with increased chemokine inducible 

protein 10 (IP-10), a potential regulatory factor for amelioration of liver injury in vivo.  

Other possibilities for large scale expansion and maturation of HLCs include a genetically engineered 

large animal model [36] to serve as an in vivo hepatocyte incubator [69]. Prior studies have established 

immunodeficient FAH−/− mice for this purpose [55]. Exposure to damaged liver tissue stimulates liver 

cell regeneration and can enhance homing and differentiation of stem cells to a hepatocyte phenotype. 

The future success of ex vivo cell therapies depends on novel techniques to provide an abundant, high 

quality supply of functionally normal hepatocytes. 
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5. Conclusions 

iPSCs present exciting possibilities for the study and treatment of liver diseases. Areas of study and 

treatment include in vitro modeling, in vivo modeling of diseases, drug development, tissue engineering, 

and development of BAL devices. iPSCs also provide novel opportunities for autologous cell therapies 

and cell transplantation without risk of immune rejection. However, there are still several obstacles that 

need to be overcome before iPSCs reach the bedside. These include: (i) improved efficiency of iPSCs 

generation without viral integration; (ii) avoidance of animal feeders to culture hiPSCs; (iii) novel 

differentiation protocols for more efficient and economical production of mature cell types whose 

functionality are comparable to their in vivo counterparts; (iv) rapid differentiation protocols for 

emergent usage; and (v) enrichment of desired (mature) cells and removal of undesired (undifferentiated) 

cell types that have the potential for tumor formation in vivo. A recent report [70] that undifferentiated 

iPSCs elicit T-cell-dependent immune responses in syngeneic mice will require further investigation. 

This report suggests that host immune responses may be important for the removal of undifferentiated 

cells due to their abnormal expression of antigens following genetic manipulation. 

A thorough preclinical assessment of iPSCs in suitable large-animal models is prudent to ensure that 

the proposed treatment with iPSC-derived cells is both safe and effective before testing in humans. It has 

reported recently that transplantation of undifferentiated iPSCs demonstrated T-cell-dependent immune 

response in recipient syngeneic mice due to the abnormal expression of antigens following genetic 

manipulation [70]. Therefore, critical aspects need to be further addressed, including the long-term 

safety, tolerability, and efficacy of the iPSC-based treatments. It is paramount to conduct well-designed 

clinical trials to fully establish the safety profile of such therapies and to define the target patient groups 

with efficacy assessed by standardized protocols. Despite their limitations, iPSC-derived hepatocytes 

remain a promising population for liver cell therapies. Moreover, engineered donor grafts derived from 

iPSCs, including re-cellularized biomatrix [71] and liver buds produced from iPSCs [67], may someday 

provide organs for liver transplantation. These results highlight the enormous therapeutic potential for 

treating organ failure. 
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