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Infertility caused by the disruption or absence of germ cells (i.e., sperm or egg) is a major and largely incurable medical problem. In vitro disease modeling
using normal human germline cells is required to better understand the precise molecular mechanisms of infertility and to develop drugs to treat this
condition. Recent advances in the differentiation methods of embryonic stem cells (ESCs) provide new avenues to generate germ cells in vitro. Further-
more, the discovery that induced pluripotent stem cells (iPSCs) can be created from a patient’s adult somatic cells by introducing the combinations of
several transcription factors (e.g., 0CT3/4, SOX2, KLF4, and MYC) enables us to generate new and powerful in vitro human disease models. In this review,
we summarize recent advances in the development of human germ cells from in vivo and in vitro cultured ESCs/iPSCs. Based on these studies, we propose
strategies to develop in vitro disease models of infertility using human ESCs/iPSCs. Then, we also discuss the challenges that need to be addressed to
harness the full potential of these models. These models will enable us to understand the precise molecular pathologies of infertility and will aid in
the development of new treatments. (Fertil Steril® 2012;97:1250-9. ©2012 by American Society for Reproductive Medicine.)

uman infertility affects 10-15%

of couples, with approximately

equal likelihood from both
partners. At present, treatments for in-
fertility are limited. Instead, in vitro fer-
tilization (IVF) techniques including
intracytoplasmic sperm injection (ICSI)
have been used to circumvent infertility
problems. To develop true therapies to
increase germ-cell numbers or to recon-
stitute reproductive organs, we require
a deeper understanding of the biology
of reproductive organ development
(i.e., testis and ovary). A number of re-
ports describing mouse models as well
as human mutational screening and
association studies reveal a high

prevalence of genetic causes of severe
infertility, including chromosomal aber-
rations and single gene mutations (1-6).
The considerable differences in germline
development between mice and humans,
coupled with the inaccessibility of
human gonads and reproductive
organs, demand that in vitro models
using human cells to recapitulate
normal and pathological human
germline development be created.

A promising strategy to generate
in vitro human models is utilizing hu-
man pluripotent stem cells. Pluripotent
stem cells have the characteristics of
self-renewal and pluripotency, defined
as the ability to proliferate while main-
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taining their differentiation potential
and to differentiate into all three germ-
layer cell types, respectively. Pluripotent
stem-cell lines, human embryonic stem
cells (hESCs) from blastocysts (7) and hu-
man embryonic germ cells (hnEGCs) from
primordial germ cells (PGCs) (8), were
first established in 1998. Since the dis-
covery of human pluripotent stem cells,
researchers have made attempts to re-
program somatic cells to pluripotent
stem cells. The year 2006 saw the first de-
scription of mouse induced pluripotent
stem cells (miPSCs), which were gener-
ated by retrovirus-mediated transduc-
tion of four transcription factors (i.e.,
Oct3/4, Sox2, KIf4, and Myc) into mouse
fibroblasts (9). Subsequently in 2007,
human iPSCs (hiPSCs) were established
by the transduction of either the same
set of transcriptional factors (OCT3/4,
S0X2, KLF4, and MYC) (10) or another
set of transcriptional factors (0CT3/4,
S0X2, NANOG, and LIN28) (11) into hu-
man fibroblasts. hiPSCs are similar to
hESCs in morphology, gene expression,
and epigenetic status of pluripotent
cell-specific genes. Furthermore, they
can differentiate into all three germ-
layer cell types in vitro and form tera-
toma in vivo. Since hiPSCs can be
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generate from patients’ somatic cells, numerous patient-specific
hiPSCs have been established, leading to a number of new in vi-
tro disease or transplantation models targeted for the study of
various genetic diseases and regenerative medicine (12-15).

In this review, we summarize recent advances in the devel-
opment of germ cells in vivo and from cultured hESCs/iPSCs.
Since the development of mouse germ cells in vivo and in vitro
has been extensively reviewed in other publications (16-21),
here we focus on studies on human germline development
and propose possible strategies to develop in vitro disease
models of infertility using hESCs/iPSCs. To realize these
strategies, several challenges must be overcome, and we will
discuss the prospective challenges and possible solutions.

MOLECULAR SIGNATURES AND
MECHANISMS OF HUMAN GERMLINE
DEVELOPMENT IN VIVO

Regulations on the Study of Human Germline
Development

Mammalian germline development has been most extensively
studied using mouse embryos as model systems with numer-
ous molecular biology and genetic techniques. In contrast,
studies of human germline development are hampered by re-
stricted access to appropriately aged material and the intrac-
tability of human tissues in culture. In the United States,
federal and state laws and regulations govern the use of hu-
man embryos for research. Federal regulations permit funding
for the study of human embryos provided that they were not
obtained solely for research purposes (45 CFR 46.201-46.211).
In the United Kingdom, the acquisition of material from first-
trimester termination of pregnancy must proceed by similar
guidelines as outlined in the US, which are based around
the recommendations of the Polkinghorne Committee, a UK
Government committee reported in 1989. These guidelines in-
clude the need to separate clinical and research consent, re-
quire that the donor receives no financial or commercial
incentives, and make clear that donor research consent should
be acquired remote from the planned laboratory experiments
(22). In Japan, there are no official laws and regulations on the
use of human embryos for research. The public statement
made from the Japan Society of Obstetrics and Gynecology
is applied to every research case. The derivation of germ lin-
eage cells (gametes and their precursors) from pluripotent
stem cells had been prohibited under Japan’s stem cell re-
search guideline by until 2008. Following the revision of it
and the establishment of additional guideline in 2010, re-
search protocols involving germ cell differentiation have
been permitted only for researches into the mechanisms of
development and regeneration or into the development of
diagnostic, preventive, or regenerative medical procedures
or products. However, fertilization via gametes derived from
human pluripotent stem cells has been prohibited (23).

With these strict guidelines in place, recent studies have re-
vealed the molecular profiles and characteristics of germ cells
and their development in human reproductive systems. The
schematic representations of human germline development
in vivo and from hESCs/iPSCs are summarized in Figure 1.

Fertility and Sterility®

Differentiation and Characterization of Human
PGCs

In human development, PGCs, differentiated from epiblast
cells, are identifiable in the hind gut at 4 weeks of gestation
and migrate to colonize the developing gonads by 7 weeks
of gestation (24-27). Human PGCs can be isolated and
confirmed by their migrating activity in vitro (28). In the
presence of feeder cells, leukemia inhibitory factor (LIF),
and basic fibroblast growth factor (bFGF), cultured human
PGCs become hEGCs, which can maintain their self-renewal
and pluripotency in vitro (8). hEGCs express alkaline phos-
phatase (AP), 0CT4, SOX2, NANOG, stage specific embryonic
antigen (SSEA) -3, SSEA-4, tumor rejection antigen (TRA)-1-
60, and TRA-1-81 as the markers of pluripotent stem cells.
Regarding the molecular signatures of human PGCs in vivo,
they lack the expression of FGF4 and SOX2 compared with
hESCs in vitro (29, 30). Human PGCs also lack the
expression of TRA-1-60 and TRA-1-81 compared with hESCs
or hEGCs in vitro (31, 32). In the human fetal embryos at
different gestational stages, only a small percentage of the
germ cells expressed C-KIT, NANOG, and OCT4, which
represent as PGCs. The number of these cells correlated with
an increase in the number of hEGC colonies derived in
culture. From these findings, human PGCs in vivo can be
characterized as C-KIT', SOX2~, TRA1-60", TRA1-81",
and FGF4~ compared with human pluripotent stem cell
lines in vitro. As PGCs are isolated and cultured in specific
culture conditions, they become hEGCs and may begin to
express SOX2, FGF4, TRA1-60, TRA1-81. These signatures
are summarized in Table 1 and will be useful to isolate and
distinguish human PGCs differentiated from hESCs/iPSCs.
From mouse studies, numerous genes are identified as specific
and functional in PGCs (e.g., Fragilis [33], Stella/PGC7 [33,
34], Blimp1/Prdm1 [35], Nanos3 [36]). However, the
expression and function of these orthologs in human PGCs
remain unclear.

In migratory PGCs at 7 weeks of gestation, the VASA pro-
tein (DDX4; DEAD (Asp-Glu-Ala-Asp) box family of ATP-
dependent RNA helicases) started to be expressed (37). This
expression pattern may be different from mouse embryos in
which the expression of the mouse Mvh gene was not detected
in migratory PGCs before their arrival at the gonadal ridge,
but rather was induced after direct interaction with gonadal
somatic cells.

Mammalian epiblast cells acquire germ-cell fate in re-
sponse to signaling molecules. From mouse studies, the for-
mation and proliferation of PGC population is dependent on
bone morphogenetic proteins (BMPs) 2, 4, and 8b (38-41).
Regarding the molecular cues or inducers of human PGC
from the epiblast, the addition of recombinant BMP4 dose-
dependently increased the number of human PGCs after 1
week of culture (42). The efficiency of EGC derivation and
maintenance in culture was also enhanced by the presence
of recombinant BMP4 (42). BMP4 also promotes the
differentiation of hESCs/iPSCs into PGC-like cells (43-45).
Responsiveness to Bmp4 in mouse epiblast cells is ensured
by Wnt3 expression (46); however, the role of Wnt3 in
human germ cell development remains unclear.
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Schematic representations of human germline development revealed by in vivo and in vitro approaches. hEGC = human embryonic germ cell; hESC

= human embryonic stem cell; PGC = primordial germ cell.
Hayashi. Human pluripotent stem cells. Fertil Steril 2012.

Mouse studies revealed that the stem cell factor (SCF)/
C-kit receptor pathway is required for successful migration
by preventing the apoptosis of PGC (47-49). As just
discussed, C-KIT is expressed in human PGCs in vivo, but
its function in human germline development is unclear. SCF
expression by feeder cells is required for the germ cell
differentiation from hESCs/iPSCs (43).

Human Germ Cell Maturation and Meiosis

Mouse studies revealed that the maturation and meiosis of
germ cells are induced by retinoic acid (RA) signaling (50).
Pre-meiotic female germ cells activated by RA signaling ex-
press pre-meiotic genes (e.g., Dmc1, Scp3, Spo11, and Stra8)
and repress Oct4 expression and then enter meiosis. While
female germ cells are susceptible to RA produced by gonadal
somatic cells, male gonadal somatic cells highly express
Cyp26b1, which encodes a P450 enzyme that catabolizes ac-
tive all-trans RA into inactive metabolites, leading to suppress
RA signaling activity in male germ cells (51). In mouse male
gonadal somatic cells, sex determination factors, such as
SO0X9/SF1, may up-regulate Cyp26b1 expression, while an

ovarian transcription factor, Fox12, may suppress Cyp26b1
expression in female gonadal somatic cells (52). Male germ
cells continue to express Oct4, but stop proliferating until
the birth of the individuals. After birth, these cells resume pro-
liferation and enter meiosis.

In human female ovary at around 8 weeks of gestation,
PGCs become oogonia when it reaches the ovary. Oogonia
can be distinguished by their more rounded outline and
distinct increase in mitotic activity from migratory PGCs
(53, 54). Regarding proliferation and apoptosis during germ
cell maturation, BMP4 negatively regulates post-migratory
PGCs (or oogonia) numbers in the human fetal ovary by pro-
moting their apoptosis, although BMP4 is required to induce
PGCs in earlier embryos (55). Conversely, ACTIVIN, which
has a competitive role in SMAD signaling against BMP4, may
be involved in the autocrine and paracrine regulation of
germ-cell proliferation in the human ovary during the crucial
period of development leading up to meiosis and folliculogen-
esis (56). Female germ cells undergoing folliculogenesis lose
OCT4 expression and no longer proliferate. In contrast,
VASA, C-KIT are expressed in germ cells at all developmental
stages of oogenesis and folliculogenesis (57). FIGLA expression
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TABLE 1

The list of gene markers for human pluripotent stem cell lines and germ cells.

Gene marker hESC/hiPSC hEGC
OCT4 + (10, 11) + (OP)
NANOG + (10, 11) + (OP)
SOX2 + (10, 11) + (OP)
SSEA1 —(7,10) +(8)
SSEA3 +(7,10) +(8)
SSEA4 +(7,10) +(8)
TRA1-60 + (7, 10) +(8)
TRA1-81 +(7,10) + (8
FGF4 + (10) +?
VASA - (37) ND
C-KIT — (OP) ND

Early PGC Migratory PGC Oogonia/gonocyte

+ (29, 30) + (31, 32) + (57, 60)

+ (29, 30) + (31, 32) ND

— (29, 30) ND ND

+ (29, 30) + (31, 32) ND
ND ND ND

+ (29, 30) + (31, 32) ND

—(31,32) ND ND

—(31,32) ND ND

—(29) ND ND

- (37) +(37) +(37,57)

+ (29, 30) + (31, 32) + (57, 60)

Note: The number in parentheses indicates the number of references. hEGC = human embryonic germ cell; hESC = human embryonic stem cell; hiPSC = human induced pluripotent stem cell; ND =

not determined or unknown; PGC = primordial germ cell.

Hayashi. Human pluripotent stem cells. Fertil Steril 2012.

is up-regulated during folliculogenesis (58). First YH2AX-pos-
itive meiotic cells appear at 11 weeks of gestation, when DMC1,
SPO11, and STRAS are expressed. In the organ culture of ova-
ries from 10-11 weeks gestation, the addition of RA signifi-
cantly increases the meiotic cells. However, RA exposure did
not induce meiosis in the organ culture of ovaries from 8-9
weeks of gestation, suggesting that the competence to respond
to RA is developmentally programmed. The mRNA level of an
RA-synthesizing enzyme, ALDH1A1, specifically increases in
human ovaries when meiosis begins. Indeed, ALDH inhibition
by citral prevented the appearance of meiotic cells (59).

In human fetal testis, male PGCs continue to differentiate
in the following sequence classified by Gaskell et al. as gon-
ocytes (OCT4"/C-KIT"/MAGE-A4 " /mitotically active); inter-
mediate germ cells (OCT4 /C-KIT /MAGE-A4 /mitotically
active); and pre-spermatogonia (0CT4 /C-KIT/MAGE-
A4% [mitotically inactive). The pattern of expression of
MAGE-A4 (melanoma antigen A4) is of particular interest
since this protein is expressed in testis cancer cells and in
spermatogonia. In first trimester, most germ cells show
a gonocyte phenotype; however, from 18 week of gestation
onward, pre-spermatogonia are the most abundant cell type
in the testis (60). A pre-meiotic gene, STRA8 expression re-
mains very low in the testis until 20 weeks gestation at least,
but could be partially up-regulated by the addition of RA to
organ culture system. However, the presence of RA is not
sufficient to cause widespread meiosis-associated gene ex-
pression in the organ culture system. Furthermore, unlike in
mouse fetal testis, the expression of CYP26B1 mRNA is not
up-regulated in human male gonadal somatic cells (61). These
results suggest that mechanisms other than CYP26B1-
mediated metabolism of RA may exist to inhibit germ cells
from entering meiosis in human fetal testis.

GERMLINE DIFFERENTIATION FROM PRIMATE
AND HUMAN ESCs/iPSCs

In 2004, Clark et al. first reported the spontaneous differenti-
ation of germ cells in embryoid bodies (cell aggregations
which permit random differentiation) from hESCs (62).
These differentiated cells express germline-specific RNA and

protein markers (e.g., VASA and SCP3). Subsequent findings
on germline differentiation from human pluripotent stem
cells can be classified in the following ways.

Toward Efficient Differentiation into Germline by
Specific Culture Conditions

Because mammalian germline development is dependent on
signaling molecules and the gonadal microenvironment, cul-
ture conditins are critical to promote the differentiation of
pluripotent stem cells into germ cells in vitro. In addition,
Bucay et al. observed that putative germline development
from hESCs is accompanied by the development of Sertoli-
like support cells (63). To mimic a suitable microenvironment
for the development of germ cells, co-culture systems or con-
ditioned medium have been used for differentiating hESCs/
iPSCs. Co-culture with human fetal gonadal stromal cells
(64), mouse Sertoli cells (65), mouse embryonic fibroblasts
(66), or porcine ovarian fibroblasts (45) increased the effi-
ciency of germ cell-like differentiation from hESCs/iPSCs.
These results confirm that specific trophic factors are required
to develop germline from pluripotent stem cells. A disadvan-
tage of these co-culturing system is that it is difficult to know
which trophic factors affect differentiation and how. As well,
the presence of feeder cells can impede biochemical and
cellular assays and scalable differentiation.

Numerous cytokines and signaling molecules have been
used in the differentiation of germ cells from hESCs/iPSCs.
Recombinant BMP4 protein and other BMPs are added to cul-
tures to promote PGC-like differentiation from hESCs/iPSCs
(43-45). RA has been used to stimulate meiosis (45, 67).
Basic FGF (66, 67), LIF (67), SCF (secreted from feeder cells)
(43), and forskolin, an adenyrate cyclase activator (45, 67),
are also used to enhance germline differentiation from
hESCs/iPSCs. However, the efficient differentiation of germ
cells from hESCs/iPSCs has not been achieved, and the
precise effect of these molecules has not been examined.
Because germline development is a multi-step differentiation
process, step-wise differentiation protocols based on the
precise effect of each molecule are required to achieve the
efficient differentiation of germ cells from hESCs/iPSCs.
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Forced Differentiation by the Manipulation of
Gene Expression

Manipulation of gene expression can regulate the cell lineage
decisions in differentiating pluripotent stem cells. Overex-
pression of RNA-binding proteins, DAZL (deleted in
azoosperma-like) and/or VASA promotes PGC formation in
differentiating hESCs/iPSCs. On the other hand, overexpres-
sion of the related genes, DAZ and BOULE promotes meiosis
and the development of haploid gametes (68, 69). These
methods driving pluripotent stem cells into germline by
overexpression of key regulators could be an efficient
platform to generate germ cell lines from hESC/iPSCs;
however, it remains to be determined how similar the
observed meiosis is to the physiological process in vivo.

Purification of Germ Cells Differentiated from
Human Pluripotent Stem Cells

Even though efficient differentiation using specific culture
conditions may be achieved, we should also be able to isolate
and purify the specific cell types. Cell-surface markers specif-
ically expressed in germ cells have been used to cell sorting.
To purify PGC-like cells from differentiating hESCs/iPSCs,
sorting with specific antibody for SSEA1 (70), SSEA1 and
C-KIT (64, 71) , and CXCR4 (63) have been used. Protocols
that purify CD9"/CD49F**/CD90~ cell populations have
been reported to enrich the pool of spermatogonia-like cells
(67). Using mESCs/iPSCs, PGC can be isolated using intrinsic
cell-surface markers, integrin-33 and SSEA1 (72); however, it
remains unclear that these cell surface markers can be used to
sort hESCs/iPSCs. In addition, although cell sorting based on
these cell-surface markers is useful and convenient, the ex-
pression of these markers is not exclusive to germline cells.

Another method to purify the specific cell types is using
a reporter system based on specific gene expression. A VASA
reporter has been used to purify a migratory PGC-like cell pop-
ulation (or germ cell populations in later stages) from hESCs/
iPSCs (68, 73). Germline-specific reporter systems, together
with purification approaches based on the detection of cell-
surface markers, are highly useful to quantitative evaluations
of germ-cell differentiation. Because germ-cell development
is a multi-step process, different reporter systems tailored to
each developmental stage should be created.

Germline Development from hiPSCs

Since the development of hiPSCs in 2007, several reports
demonstrated that hiPSCs are able to differentiate into germ
cells. Park et al. first showed that PGC-like cells can be differ-
entiated from hiPSCs (64). BMP4 enhances the differentiation
into VASA-positive PGC-like cells from fetal- and adult-
derived hiPSCs in a similar manner to hESCs (74). Haploid
cells resulted from meiosis are consistently obtained from
hiPSCs lines generated from different tissues (67). Meiosis
was induced in differentiating hiPSCs by overexpressing
DAZL and/or VASA in a similar manner to hESCs (69). These
studies indicate that hiPSCs have almost the same ability to
differentiate into germ cells as hESCs. In the future, it will
be interesting to examine patient-specific iPSCs that are

defective in their ability to generate germ cells, by comparing
their differentiation capacity with that of normal hESCs/
iPSCs.

Germline Differentiation from Non-Human
Primate ES/iPSCs

Non-human primate ESCs/iPSCs is also useful for assessing
the functionality of the germ cells differentiated from plurip-
otent stem cells. In 2007, Teramura et al. demonstrated that
cynomolgus monkey ESCs can differentiate into PGC-like
cells (75). The differentiation can be enhanced by conditioned
medium from testicular or ovarian cells or by adding recombi-
nant BMP4, RA or SCF (76). The self-renewal of differentiated
PGC-like cells can be prolonged by LIF treatment (77). Further
studies, including functional assays in vivo, would be
interesting to examine their developmental potential and
molecular mechanisms of primate germline development as
a substitute model for human germ cell differentiation from
pluripotent stem cells.

DISEASE MODELING USING HUMAN
PLURIPOTENT STEM CELLS

Based on the studies reviewed above, we propose targets for
potential disease modeling and drug screening using hESCs/
iPSCs. We summarize the possible strategies in Figure 2.

Male Genetic Infertility

Infertility or subfertility affects 15% of couples, with a male
contribution to the fertility problem in close to 50% of the
couples. In case of male infertility, up to 20% are caused by
azoospermia, defined as a lack of sperm in semen. Azoosper-
mia can be categorized as: pre-testicular azoospermia (ac-
counting for 20% of men with azoospermia, due to
a hypothalamic or pituitary abnormality); testicular failure
or non-obstructive azoospermia (49% to 93% of cases, with
the term testicular failure suggesting a complete absence of
spermatogenesis); and post-testicular obstruction or retro-
grade ejaculation (7% to 51% cases, caused by normal sper-
matogenesis but obstructive azoospermia or retrograde
ejaculation). In testicular failure or non-obstructive azoosper-
mia, molecular genetic techniques have unveiled a number of
genetic mutations, including micro-deletions of the Y chro-
mosome ¢ arm. These micro-deletions, which remove the
AZoospermia Factor (AZF) regions, are the most frequent ge-
netic causes of azoospermia. AZF regions follow a certain de-
letion pattern, with three recurrently deleted non-overlapping
subregions in proximal, middle, and distal Yq11, designated
AZFa, AZFb, and AZFc, respectively (78). The AZFa region
contains USP9Y and DBY genes. The AZFb region contains
unique genes (i.e., HSFY, elF-1Y, SMCY) and others that are
shared with the AZFc region (i.e., one copy of BPY2 and
CDY and two copies of DAZ). Moreover, two gene families
with multiple copies on the Y chromosome have their active
copies in the AZFb region, including RBMY and PRY genes.
AZFc region contains DAZ gene and CDY gene families. Un-
fortunately, these Y-chromosome micro-deletions cannot be
directly modeled in mice because candidate genes on the

1254

VOL. 97 NO. 6 /JUNE 2012



Fertility and Sterility®

MALE INFERTILITY FEMALE INFERTILITY
PATIENT PATIENT

- Y-Chromosome Deletion
(AZFa/b/c, etc)

- X-Linked Mutation
- Autosomal Mutation

Skin or
Other Orga\ /
Biopsy

- POF/PQI

Reprogramming‘

Environmental Toxicants
Drug Candidates

v
; e Differentiation Maturation Meiosis
Disease-specific ( i
/ Germ Haploid
f//— Cells Cells
Normal iPSCs, |
Human ESCs
v \ 4 v
' Assays:
Differentiation Efficiency, Cell Proliferation Rate, Survival Rate,
ErEe Editingi%itjm RNA and Protein Expression, etc.

Schematic representations of possible strategies of in vitro disease modeling using hESCs/iPSCs. ESC = embryonic stem cell; hESC = human
embryonic stem cell; iPSC = induced pluripotent stem cell; PGC = primordial germ cell; POF = premature ovarian failure; POl = primary

ovarian insufficiency.
Hayashi. Human pluripotent stem cells. Fertil Steril 2012.

human Y chromosome are frequently located on X chromo-
some or on autosomal chromosomes in the mouse genome.
For example, the DAZ gene family, located on the Y chromo-
some in humans, is not present on the mouse Y chromosome
(79). Its autosomal homologs are present in all mammals.
In addition to the Y chromosome, certain autosomal chromo-
somal abnormality are also linked to male infertility,
including aneuploidy, X-chromosome abnormality, or
Robertsonian translocations (defined as rearrangements that
occur in the five acrocentric chromosome pairs, namely 13,
14, 15, 21, and 22.) (80). Furthermore, many attempts at
finding mutations in infertile humans by using known mouse
infertility genes have been unsuccessful (1). To date, there are
no established methods to promote spermatogenesis from
non-obstructive azoospermia patients. Modeling of azoosper-
mia using hESCs/iPSCs with the relevant chromosomal
abnormalities would greatly improve our understanding of
the underlying pathology and would help in the design of
treatments.

Female Genetic Infertility

Primary ovarian insufficiency (POI)—also known as premature
ovarian failure (POF) is a major cause for female infertility.
The cause of POI/POF can be classified according to whether
autoimmune disorders, abnormal hormone regulation, viral

infection, surgery, chemotherapies or radiotherapies, or
genetic mutations are involved. A number of studies using
genetically modified mice or genome-wide associations
have linked several ovarian genes to POI/POF, such as
BMP15, BMPR1B, DAX1, FMR1, FOXL2, POF1B, and SF1;
however, it is unknown how these genes are involved in the
pathology of POI/POF (81). Modeling of POI/POF using
hESCs/iPSCs with the known genetic mutations would be an
excellent way to examine the pathology of POI/POF and to
the development of treatments.

Environmental Factors

For male fertility, numerous environmental toxicants ad-
versely affect spermatogenesis and can lead to low sperm
count, abnormal sperm morphology and poor semen quality
(82). Ovarian function in women can also be compromised
by exposure to them. Ovarian toxicants can directly cause
ovarian failure by extensive follicular destruction or by inter-
ference with steroid hormone action (hypothalamus and/or
pituitary) (83). However, in spite of these findings, the precise
effects of environmental factors on their pathology of infertil-
ity are largely unknown. Organ culture systems of human
fetal gonads have been used to examine the toxicity of envi-
ronmental factors (e.g., cadmium [84], uranium [85], and irra-
diation [86]). Since hESC/iPSC developmental models could
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be examined in scalable, high-throughput, and direct man-
ners, these models can be applied to monitor and examine
the effect of these environmental chemicals. In fact, Kee
et al. demonstrated that the number of PGC-like cells
differentiated from hESCs is diminished by exposure to poly-
cyclic aromatic hydrocarbons (PAHs), a family of toxicants
commonly found in air pollutants released from gasoline
combustion or tobacco smoke. PAHs act through the aromatic
hydrocarbon receptor (AHR) and BAX signaling pathways in
the hESC-based differentiation system (87). These results were
consistent with studies using PGCs in human fetal testis (88).

CHALLENGES TO DEVELOP DISEASE MODELS
USING hESCs/iPSCs

The development of genetic disease models in pluripotent
stem cells for drug screening applications is hampered by cur-
rent technology. Here, we discuss the challenges and possible
solutions of disease modeling with hESCs/iPSCs. These dis-
cussions are useful not only for reproductive tissues, but for
general disease modeling using hESCs/iPSCs.

Inefficient Differentiation and Purification
Technologies

To develop the differentiated hESC/iPSC model for high-
throughput drug development studies, robust and scalable
differentiation and purification methods are required. How-
ever, current protocols to differentiate and purify human
germ cell are inefficient. As shown in Figure 1, the differenti-
ation of pluripotent stem cells into germ cells is a multi-step
process that requires exposure to specific stimuli at discreet
stages of development, to achieve directed and convergent
differentiation. For the purification of germ cells, several dif-
ferent reporter systems, which represent the different devel-
opmental and sexual stages of germline development, must
be developed.

Cell Line Variability of Cultured Pluripotent Stem
Cells

To make disease model using pluropotent stem cells, a major
ongoing issue relates to the inherent cell-line variability of
these cells. hESC lines have a high differentiation propensity
(89); therefore, hiPSC must be similar in this way. Mouse
iPSCs derived from different adult tissues varied substantially
in their propensity to form teratomas, as measured by the
transplantation of secondary neural spheres into the striatum
of NOD/SCID mice. The likelihood of teratoma formation was
correlated with the persistence of undifferentiated cell popu-
lations within the neural spheres (90). Thus, patient-specific
hiPSC lines even from the same patient may have the
cell-line variability to cause off-shot effects. The cause of
this variability remains unknown. Furthermore, in many
cases, it is difficult to obtain patient-specific tissue samples
from enough donors with the same type of mutations. Thus,
the limited number of cell lines or donors currently available
affects our ability to understand cell-line variability. To over-
come this problem, we may need to develop other sophisti-
cated strategies in conjunction with patient-specific hiPSCs.

As options, we can use genome editing technology, such as
zinc-finger nucleases (ZFN) (91) or TAL-effector nucleases
(TALEN) (92) in hESCs/iPSCs. For patient-specific hiPSCs,
Soldner et al. demonstrated that ZFN genome editing technol-
ogy could produce isogenic hiPSCs that carry point mutations
with genetic forms of Parkinson’s disease (93). These technol-
ogies could help us to develop more robust genetic disease
models using hESCs/iPSCs.

Inconsistency Between In Vivo Development and
In Vitro Differentiation of Pluripotent Stem Cells

In the differentiation culture systems from pluripotent stem
cells, we sometimes observe the different cell behaviors and
patterns of gene expressions from in vivo development. These
represent the inconsistency between in vivo development and
in vitro differentiation of pluripotent stem cells. For example
in germ cell development using hESCs/iPSCs, haploid cells
can be induced just 14 days after induction by over expression
of DAZL, BOULE and DAZ (68). These results might indicate
the limitation of the in vitro developmental models using
hESCs/iPSCs; however, even these culture artifacts (e.g., in-
credible speed of germ cell maturation) could be the advan-
tages of the in vitro models after careful and precise
considerations. It is important to examine which part of
in vivo development can be recapitulated in disease models
using hESCs/iPSCs.

Alternative Source 1: Germline Stem Cells Derived
From Adult Testis or Ovary

One alternative way to obtain germ cells might be isolating
(and expanding) adult germline stem cells from reproductive
organs instead of by differentiating germ cells from pluripo-
tent stem cells. In mice, male germ stem cells can be cultured
while maintaining their self-renewal and functionality (94).
Izadyar et al. reported that spermatogonial stem-like cells,
which express SSEA4, C-KIT, NANOG, and OCT4, exist in
adult human testis and that these cells can be isolated based
on the expression of cell-surface markers (95). Virant-Klun
et al. reported that ovarian stem-like cells, which express
SSEA4, 0CT4, NANOG, and C-KIT, exist in the ovarian sur-
face epithelium from adult POF patients and can be isolated
(96). Very recently, White et al. reported that mitotically ac-
tive oogonial stem cells (0SCs) can be purified by sorting
with VASA expression presented on the cell surface from
adult mouse ovaries and human ovarian cortical tissues
(97). The 0SCs can be expanded for months on MEF feeders
and can spontaneously generate 35- to 50-mm oocytes, as de-
termined by morphology, gene expression and haploid (1n)
status. Injection of the OSCs into human ovarian cortical bi-
opsies leads to formation of follicles containing oocytes 1-2
weeks after xenotransplantation into immunodeficient fe-
male mice. These findings suggest that reproductive-age
women may possess rare mitotically-active germ cells that
can be propagated in vitro as well as generate oocytes
in vitro and in vivo. Together, deriving germ cells from adult
reproductive organs could be an alternative way to make
In vitro disease models; however, there are caveats with this
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approach as well. One, access to the adult reproductive organs
for biopsy is very limited, making harvesting these cells diffi-
cult. Second, the robust purification and expansion enabling
scalable differentiation of human germline stem cells are still
difficult.

Alternative Source 2: Trans-Differentiation or
Reprogramming into Germ Cells from Somatic
Cells

Another alternative way to obtain germ cells might be to con-
vert other cell types to germ cells instead of by differentiating
germ cells from pluripotent stem cells. Hua et al. reported that
that there are a subset of cells in human fetal bone marrow
that express germ cell markers (98). Drusenheimer et al. also
reported that a small population of bone marrow cells ex-
pressed the early germ cell markers OCT4, FRAGILIS, STELLA,
and VASA and the male germ cell-specific markers DAZL and
STRAS (99). Huang et al. reported that human umbilical-cord
Wharton’s jelly-derived mesenchymal stem cells (HUMSCs)
could form “tadpole-like” cells after induction with different
reagents. These cells expressed germ cell-specific markers
0CT4, C-KIT, CD49F, STELLA, and VASA in the culture
conditions with all-trans RA, testosterone and testicular-
cell-conditioned medium prepared from newborn male mouse
testes (100). These approaches might be attractive to generate
germ cells from somatic cells for therapeutic application of re-
productive medicine and in vitro disease modeling; however,
it is not yet confirmed that these trans-differentiated cells
have the functionality of germ cells. Furthermore, Eggan
et al. showed that no evidence that bone marrow cells, or
any other normally circulating cells, contribute to the forma-
tion of mature, ovulated oocytes, using transplantation and
parabiotic mouse models to assess the capacity of circulating
bone marrow cells to generate ovulated oocytes (101).
Therefore, whether trans-differentiation into germ cells
from somatic cells is a viable strategy for in vitro disease
modeling is still in doubt.

CONCLUSIONS

The development of hiPSCs has opened up new avenues to
generate in vitro disease models of infertility using patient-
specific stem cells. The advances of the technology to manip-
ulate the differentiation of hESCs/iPSCs into germ cells will
allow us to understand underlying disease mechanisms, and
to develop new drugs of infertility. However, we have faced
several challenges in our efforts to develop in vitro disease
models and the applications for drug screening using
hESCs/iPSCs, including low efficiency of directed differentia-
tion methods and cell-line viability. Nevertheless, reproduc-
tive diseases and infertility are still highly promising areas
with in vitro disease models using hESCs/iPSCs, as we dis-
cussed in this review. We hope that these models will be uti-
lized to cure infertility for couples desiring parenthood.
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