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Background

Spermatogonial stem cells (SSC) exist in the base-
ment membranes of the seminiferous tubules of 
the testis (1, 2). They have the function of self-re-
newal and differentiation into haploid spermatids 
in adults (3). Because of their high proliferative ca-
pacity, they are prone to damage by chemo- and 
radiotherapy (4). To help the patients who survived 
cancer to bear their biological child, SSC cultur-
ing as well as freezing and thawing methods have 
been researched at many centers. 

SSC produce sperms in vivo, but they are proven 
to be pluripotent in vitro; in many studies, embry-
onic stem cells (ESC) are produced from them in 
cell cultures (5-7). Cells of three embryonic germ 
layers were produced in many researches by gen-
erating ESC from SSC of both mice and humans 
(8-10). Functional neurons and glial cells and ma-
ture cardiac and endothelial cells are some of the 
striking end-products obtained in research field 
(11, 12). Direct transdifferentiation of SSC from 
the neonatal mice into cells of all three germ lay-
ers, such as uterine, prostate, and skin epithelia, 
was also reported (13). Glial cell line-derived neu-
rotrophic factor (GDNF), fibroblast growth factor 2 
(FGF 2), leukemia inhibitory factor (LIF), and epi-
dermal growth factor (EGF) enhanced long-term 
spermatogenesis in in vitro cultures of mouse SCC 
(14). Addition of recombinant bone morphoge-
netic protein 4 (BMP 4) increases the number of 
human primordial germ cells (PGC) in the cultures 
and promotes the differentiation of ESC as well 

as induces the development of pluripotent stem 
cells (iPSC) into PGC (15). Retinoic acid is another 
important regulator improving the in vitro differ-
entiation of prepubertal mouse SSC into sperma-
tids (16), and it possibly performs its role via the 
phosphatidyl inositol 3-kinase/AKT (PI3K/AKT) 
pathway and KIT protein (17). Pelota (Pelo) is a 
recently elucidated gene, and its protein is impor-
tant in the maintenance of spermatogenesis of 
germ cells in male mice. Pelo protein is suggested 
to control the PI3K/AKT pathway (18).

Male germ cells have been generated from ESC 
and iPSC in many studies, but it is observed that 
offsprings obtained in researches starting from 
PGC are normal when compared with the ones ob-
tained in studies starting from ESC or iPSC (19). The 
interest of this review is the new developments in 
producing spermatids from SSCs. Hereafter, we will 
discuss about the researches investigating this sub-
ject in mammals.

Developments in non-human mammals  
In 1994, Brinster et al. (20, 21) demonstrated that 
the transplanted SSC from the donor mice could 
engraft the seminiferous tubules of the recipient 
mice, which was treated with chemotherapy before 
transplantation to terminate host spermatogene-
sis. Spermatogenesis was successfully restored, and 
viable progeny could be produced through normal 
breeding. In this year, another group also managed 
to produce haploid spermatids from mice in vitro 
but the fertilization capacity of these spermatids 
remained unknown (22).
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Staub et al. (23) demonstrated the differentiation of spermatocytes 
and spermatids from the rat testicular cell mixture in vitro. The re-
sults were confined by morphological and biochemical analyses. 
Testicular tissues from newborn mice, pigs, and goats completed 
spermatogenesis when they were grafted under the skin of nude 
mice (24). The sperm product of this ectopic tissue was also dem-
onstrated to be capable of producing offspring (25). Subsequently, 
the same experiment was tested on the prepubertal rhesus ma-
caques; fertilization competent sperm could be obtained from the 
ectopic testicular tissue that was transplanted into nude mice (26). 
The grafts from the prepubertal animal tissues were more success-
ful with regard to survival and establishment of spermatogenesis 
than the grafts from the adult tissues (27).

Subsequently, donor-derived progeny had been obtained in oth-
er mammals such as mice, rats, sheep, and goats (27, 28). The re-
searches in rodents continued to result in the successful produc-
tion of SSC in tissue cultures, and the products were competent 
in spermatogenesis and restored fertility upon transplantation 
(29- 31). Sperm could be recently produced from SSC in serum-
free cultures of fresh and cryopreserved neonatal mouse testes 
(32, 33). Hermann et al. (34) demonstrated that chemotherapy-
induced infertility can be accomplished by autologous or allo-
geneic SSC transplantation, resulting in the restoration of sper-
matogenesis in non-human mammals.

The genomic stability of SSC is very important because these 
cells transmit genetic information to next generations. The stabil-
ity of androgenetic imprinting and normal karyotype was shown 
in mouse SSC after 24 months of culturing. The offspring of recipi-
ent mice proved to be fertile and had normal imprinting pattern 
(35). But the genetic alteration of isolated and cultured human 
SSC still remains to be determined.

Developments in human SSC studies
In 1999, the pioneering study of Radford et al. (36) made the 
researchers more convenient about the desire of the patients 
in protecting their fertility and supported the development of 
new experiments. In this study, before the exposure of chemo-
therapeutic agents, testicular tissues obtained from 12 male non-
Hodgkin’s lymphoma patients were cryopreserved. These cellular 
suspensions were returned to seven of those patients. However, 
the follow-up regarding patients’ fertility is lacking.

Sousa et al. (37) obtained late-stage spermatids from the cocul-
ture of mixture of cells isolated from the testicular biopsies of 
non-obstructive azoospermic patients with the Vero cell-con-
ditioned medium, FSH-containing medium, or both FSH and 
testosterone-containing medium. Significant number of meiosis 
could be obtained, and the fertilization potential of the in vitro 
matured spermatids were controlled by microinjecting them into 
human oocytes. Normal elongating and elongated spermatids 
elicited 30.5% of fertilization and 42.9% of blastocyst rates. Most 
of the embryos could not reach the morula stage and expressed 
major abnormalities in the sex chromosome. In another study, 
haploid spermatids could be obtained in vitro from the SSC of 
non-obstructive azoospermia and Sertoli cells-only syndrome 
patients. They possessed normal chromosomal structure and 
could also activate human oocytes (38).

When the SSC of immature human testes frozen with dimethyl sulf-
oxide were xenotransplanted to mice, they showed migration ability 
toward the basement membrane of seminiferous tubules without 
differentiation into mature germ cells (39). Nagano et al. (40) isolated 
human SSC from six infertile men and showed that these cells could 
make colonies and were able to survive for 6 months in recipient 
mice testes after a freezing–thawing procedure. The number of SSC 
decreased significantly after 2 months from transplantation, and mei-
otic differentiation of these cells could not be observed.

During the last 10 years, human SSC were produced in many cen-
ters (27, 41, 42), and 3 of whichfrom prepubertal human testes (39, 
43, 44). Testicular biopsies from nine boys with cancer aged 2–10 
years resulted in the isolation of SSC showing stem cell activity 
after xenotransplantation into mouse testes. Only 3% of the cell 
population in the biopsy specimen were SSC (43). The efficiency 
of SSC transplantation mainly depends on the number of trans-
planted SCC. Therefore, in vitro increase in the amount of SSC is 
necessary before transplantation (45). This was achieved in both 
adult (46) and prepubertal (39) human testes. A feeder layer from 
the patients’ own testicular somatic cells was required to support 
SCC in these systems (45). Human SSC were viable up to 15 weeks 
with a doubling time of 3–7 days in an in vitro environment. 

The lack of standardization of culturing techniques and the in-
ability of transplantation of cultured cells into human testes to 
evaluate their spermatogenic potential are the points that need 
to be further studied and improved.

Although the testicular tissue transplants in non-human mam-
mals resulted in functional sperms and healthy offspring (25, 
26), the human testicular tissue xenografts to nude mice have 
not completed spermatogenesis nor haploid gametes could be 
obtained from them (47-49). Spermatocytes were the most ad-
vanced cell stage in them. The observation of primary spermato-
cytes in the xenograft of testicular tissues of a 3-month-old boy 
by Sato et al. (49), even after 1 year from grafting, gives us hope 
about the viability of the grafts. 

Conclusion

SSC researches provide hope to patients suffering from infertility 
owing to gonadotoxic treatments, cancer, or azoospermia. Freez-
ing and thawing methods as well as the experiments of allo- and 
xenotransplantation of testicular tissues are improved to obtain 
viable and fertile sperms from SSC. Although offsprings could be 
obtained in some non-human vertebrates, there is a long way for 
human SSC to be used as the source of functional sperms in these 
patient groups. 

The risk of malignant contamination of the testicular tissue, lim-
ited availability of human samples, and non-standardization of 
cryopreservation and culturing methods of the testicular tissue 
samples are the challenging subjects of this area. The use of xe-
nobiotics in xenotransplantion is another concern.

Because of uncertainty methods that will be used in clinics in the 
future, it is appropriate to preserve testicular tissue in a manner in 
which viability and functionality can be maximized.
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