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The potential of induced pluripotent stem cells in models of neurological
disorders: Implications on future therapy

Abstract
There is an urgent need for new and advanced approaches to modeling the pathological mechanisms of
complex human neurological disorders. This is underscored by the decline in pharmaceutical research and
development efficiency resulting in a relative decrease in new drug launches in the last several decades.
Induced pluripotent stem cells represent a new tool to overcome many of the shortcomings of conventional
methods, enabling live human neural cell modeling of complex conditions relating to aberrant
neurodevelopment, such as schizophrenia, epilepsy and autism as well as age-associated neurodegeneration.
This review considers the current status of induced pluripotent stem cell-based modeling of neurological
disorders, canvassing proven and putative advantages, current constraints, and future prospects of next-
generation culture systems for biomedical research and translation.
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The potential of induced pluripotent stem cells in models of neurological 

disorders: implications on future therapy 

 

Summary 

There is an urgent need for new and advanced approaches to modelling the pathological 

mechanisms of complex human neurological disorders. This is underscored by the 

decline in pharmaceutical research and development efficiency resulting in a relative 

decrease in new drug launches in the last several decades. Induced pluripotent stem 

cells represent a new tool to overcome many of the shortcomings of conventional 

methods, enabling live human neural cell modelling of complex conditions relating to 

aberrant neurodevelopment, such as schizophrenia, epilepsy, and autism, as well as age-

associated neurodegeneration. This review considers the current status of induced 

pluripotent stem cell-based modelling of neurological disorders, canvassing proven and 

putative advantages, current constraints, and future prospects of next-generational 

culture systems for biomedical research and translation.  
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Induced pluripotent stem cells (iPSCs) proffer new opportunities to research complex 

neurological disorders, extant therapies, and develop treatments with improved and 

personalised efficacy including in vitro detection of neurotoxicity. As stem cells 

engineered from readily obtained somatic cells, iPSCs are able to be derived from 

patients of all ages with disorders of development and/or neurodegeneration, and 

provide insight to etiopathology previously unattainable by conventional approaches. 

That is not to say that iPSC-based research supersedes other methods such as animal-

based modelling or human brain tissue studies, but rather it enables a complimentary 

line of research to advance understanding and treatment of human disease-related 

neural-phenotypes using living cells and derivative tissues. For example, where 

analyses of post-mortem tissues have for the most part provided insight to the 

advanced phases of aberrant development and degeneration[1], and despite dramatic 

progress in experimental methods for using mice to study monogenic and polygenic 

traits with relevance to human disease, mouse modelling encompasses a minority of 

neurological diseases, frequently fails to express every trait of a disorder, while human 

iPSCs can be derived with the specific genetic traits of any disease from any patient 

during their entire lifetime. Cells can therefore be used to recapitulate the different 

stages of a disease and model singular or cumulative effects of defective genes. 

Additionally, since most diseases involve interaction with environmental risk factors, 

more sophisticated iPSC-based modelling can incorporate relevant physical and 

chemical stimuli able to be rigorously controlled and investigated[2]. This approach will 

be especially useful for studying sporadic or idiopathic forms of a disease to understand 

gene-environment interactions and disease pathogenesis.    
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iPSC-based models of neurological disorders 

Human neurological disorders can involve the central and peripheral structures of the 

nervous system and be due to traumatic injury (TI), aberrant neurodevelopment (NDv) 

and neurodegeneration (NDg).  Whereas TI is caused by a focal impact with primary 

damage at the time of injury and secondary damage in the days thereafter, NDv 

disorders relate to pre- and post-natal anomalies of the developing nervous system, and 

NDg disorders are characterised by prolonged neural deterioration due to disease 

progression. Both NDv and NDg disorders are often associated with specific genetic 

lesions but can involve non-hereditary stimuli such as environmental stressors. In any 

event, the short- or long-term outcome will typically be aberrant neuronal morphology, 

branching and connectivity, with TI and NDg disorders also associated with cell death.  

Notwithstanding the potential utility of iPSCs for modelling TI in vitro, unlike 

NDv and NDg disorders, the significance is for the most part limited to providing an 

alternative source of neural cells and tissues to evaluate the effects of TI and develop 

strategies to improve cell survival after trauma and endogenous neural stem cell 

mobilisation to form new functional neurons at the site of injury. Other stem and 

progenitor cells able to be differentiated to neural lineage can fulfil the same role and 

animal models for in vivo research and development (R&D) are available. Predictably, to 

the best of our knowledge, no iPSC-based modelling of TI has been described to date. By 

comparison, disease-specific iPSCs provide new prospects for disease-related R&D by 

enabling screening for genes and disease processes potentially modifiable by drugs 

identified through in vitro screening.  Consequently, iPSCs have been successfully 

derived from patients with NDv disorders including schizophrenia[3-11], Down’s 

syndrome[12-21], autism spectrum disorders (ASDs) including fragile X, Rett and 

Timothy syndromes[22-35], and epilepsy[36-39], as well as NDg disorders such as 
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Alzheimer’s disease[40-48], Parkinson’s disease[49-64], Huntington’s disease[65-71], 

spinal muscular atrophy (SMA)[72-75], amyotrophic lateral sclerosis (ALS) [76-86], and 

Friedreich’s ataxia [87-89].  

As the field moves beyond proof-of-concept for the utility of patient-specific 

iPSCs, modelling is growing exponentially, with increasingly sophisticated culture 

systems, cell lines, and characterisation for more informative readouts. A topical study 

by Bilican et al (2012) of iPSCs derived from patients with ALS report an increased 

sensitivity to a stressor measured by a lactate dehydrogenase (LDH) release assay to 

measure neuronal survival[86].  The difference between ALS and control cells was not 

apparent under basal culture conditions, underscoring the need for innovative 

modelling paradigms to identify potentially significant disease-associated phenotypes.  

Another recent study of iPSC-derived neurons from PD patients, demonstrates 

the importance of selecting appropriate control iPSCs beyond conventional “healthy” 

cell-lines by showing the need for isogenic gene-corrected hiPSC lines to detect changes 

specifically associated with mutant Leucine-rich repeat kinase 2 (LRRK2) gene[90]. The 

mutant phenotypes were not evident using iPSC lines derived from age- and sex-

matched control patients.  

It is ever more apparent that different disorders will have different requirements 

for optimal modelling. Similarly, modelling complex and heterogeneous disorders (such 

as ALS, schizophrenia and ASDs) will undoubtedly benefit from selecting donor cohorts 

of patients with similar clinical phenotypes, case histories, therapeutic responses and, 

wherever possible, common genotypes, in addition to tailoring cell culture conditions to 

account for putative relevant non-hereditary environmental triggers for disease onset.     

 

Neural differentiation of iPSCs: Quality and quantity 
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The ability to differentiate iPSCs to bone fide neurones and supporting cells that 

accurately imitate the form and function of cells and tissue of the developing and 

diseased nervous system is a fundamental requirement for modelling. For instance, 

refinement of differentiation methods to develop specific neuronal subpopulations that 

are preferentially impaired in a disease will enable more specific and informative 

mechanistic studies[30]. In spite of a myriad of methods published to date, many based 

on early protocols for human embryonic stem cell (hESC) differentiation[30,91-95], 

their application is ordinarily hindered by low and variable efficiency[95]. Although the 

problem may in part relate to the differentiability of different iPSC lines, incomplete 

reporting and poor standardisation of process and reagents are likely contributing 

factors. The former is more difficult to address, however, the latter should theoretically 

be easily remedied through use of quality controlled cells, processes and reagents, as 

well as detailed, accurate and transparent reporting of old and new methods employed 

for publication.   

While operators within academic and other publically or privately funded 

laboratories are presumed to systematically and meticulously develop and execute first-

rate protocols for repeatable and precise in-house experimentation, translation for 

application by the wider field can be hindered by inadvertent or intentional omission of 

seemingly cursory actions from published documentation, and constrained research 

budgets can favour the use of cheaper lower grade consumables for R&D.  While not the 

whole solution, advocating standards for the quality and disclosure of materials and 

methods used to maintain, culture and differentiate iPSCs, including both their 

strengths and limits, will benefit both research and translation of modelling[96-98]. To 

this end, influential bodies such as granting agencies, publishing houses and perhaps 

even regulatory bodies have important roles to play by requiring compliance with 
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standards in order for a research laboratory to obtain funding, publish and gain 

approval for clinical trials or therapeutic goods/products[97,98].  

In spite of the above mentioned challenges, improvements for iPSC 

differentiation to neural cells and tissues are being made through the development of 

better defined, optimised and efficient protocols[30,99-103], bolstered by increased 

availability of superior stem cells attributable to improved somatic cell reprogramming, 

stem cell culture, banking and distribution[104-107]. A major advance from traditional 

differentiation methods is the circumvention of embryoid body (EB) formation for more 

efficient and direct induction of neural progenitor cells (NPCs) and expansion of 

neurospheres[99-102]. For example, Lie et al proffers high yield production of NPCs 

from feeder-free iPSC aggregates cultured in mTeSR™1(Stem Cell Technologies)[99]. 

Intermediate steps include sequential differentiation over 15 days of stem cell 

aggregates to monolayer neural rosettes that are expanded into free-floating 

neurospheres[99]. NPCs can be further differentiated into a variety of neuronal 

subtypes, including dopaminergic neurons within 21 days.  

A more protracted method by Shi et al induces iPSCs over 90 days to excitatory 

“cortical projection” neurons, with intermediate “cortical primary” stem/progenitor 

cells formed within 2 weeks, followed by “early-born” neurons produced between 2-3 

weeks, and “last-born” neurons arising as late as day 90 [100]. The method is based on a 

much earlier protocol of SMAD signalling inhibition[93], and is purportedly highly 

efficient and less variable among different cell lines due to replacing noggin with SMAD 

inhibitor dorsomorphin[100]. In addition to modelling cortical cell function and 

dysfunction, the authors assert the utility of their approach for cortical tissue 

engineering for transplantation.  
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Shofuda et al propose a three stage protocol for generating neurospheres from 

human iPSCs by initially using human recombinant noggin medium and poly-L-

lysine/laminin substrate to induce NPCs, followed by neurosphere formation with 

FGF2/heparin medium in low-attachment polyethylene glycol coated microwell plates, 

and finally neurosphere expansion with EGF/FGF2/LIF medium in flasks [101]. The use 

of microwell plates ostensibly facilitates quicker, efficient, reliable and more 

standardised production of neurospheres, and draws from the use of microwell systems 

for more standardised culture of stem cells and other cells including EBs[101].  

A fourth and most recent method by Musah et al represents a different approach 

to neuronal induction by using substratum mechanics rather than soluble signalling 

factors to regulate neuronal specification from iPSCs[103]. Consistent with advances in 

biomaterials based cell support and tissue engineering (see below section), whereby 

physical and other non-chemical stimuli are increasingly being applied to regulate cell 

fate, Musah and colleagues use hydrogels with elasticity similar to brain tissue to 

rapidly and efficiently differentiate iPSCs to neurons. Surprisingly, neuronal induction is 

achievable with mTeSR™1-based culture medium (with or without medium components 

FGF2, TGF-β or GABA) or basal (DMEM/F12) medium. The protocol underscores the 

importance and utility of cell substratum for stem cell differentiation, and highlights 

unconventional cell signalling pathways such as transcriptional co-activator Yes-

associated-protein (YAP) as useful targets for controlling neural induction in 

conjunction with ubiquitous soluble factor signalling (eg. SMAD).  

       

Modelling with biomaterials: The way for the future   

Traditional protocols for iPSC maintenance and differentiation rely on methods 

originally devised for hESCs using two-dimensional (2-D) culture on smooth and 
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inflexible surfaces such as glass or plastic, with growth media, biochemical supplements 

such as recombinant growth factors, and either a feeder layer of mitotically-inactivated 

mouse or human fibroblasts, or feeder free[108-113]. Feeder free platforms are 

preferable for both R&D and clinical product development (ie. to simplify process and 

facilitate scale-up from laboratory-based research to industrial-scale biomedicine) and 

incorporate specialist media, for example mTeSR™ [110,111], StemPro®  (Life 

Technologies), and Essential 8™ (Life Technologies)[114], with more or less complex 

substrates such as Matrigel™ (Becton-Dickenson; a solubilized basement membrane 

preparation extracted from mouse Engelbreth-Holm-Swarm sarcoma), single or 

combinations of extracellular matrix (ECM) proteins such as laminin, fibronectin, 

vitronectin, and collagen, cell adhesion proteins including E-cadherin, or synthetic 

peptide coatings such as Synthemax™ (Corning). Matrigel™ comprises variable levels of 

proteins and growth factors, including laminin, collagen IV, heparan sulfate 

proteoglycans, and entactin (nidogen), as well as substantial amounts of sarcoma 

derived growth factors such as TGF-β, fibroblast growth factor, and insulin-like growth 

factor. Other more defined culture surfaces include Primorigen’s StemAdhere™ and 

Vitronectin XF™, both of which are xenobiotic-free.  

Although useful, the classical approaches described above fall short of 

recapitulating the complex and dynamic environment of cells in vivo (ie. the cell niche), 

with conventional flat-bed culture on a dish or in a flask predictably resulting in 

markedly different cell behaviour[115]. There is, therefore, scope for newer systems 

that provide biomimetic environments to create conditions for cells to better mimic 

their in vivo counterparts. Initial strategies have focused on using biocompatible 

materials with properties of ECM that support cell growth, including ECM stiffness and 

related mechanical signals for improved and directed cell migration, proliferation and 
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fate. More recently, electrical stimulation using conductive materials has been shown to 

effect proliferation, differentiation, migration, and changes in cell adhesion. Not 

surprisingly, the mechanical and electrical properties of tissues are altered in many 

disease states, resulting in cellular dysfunction and disease progression. Also, 

endogenous electric fields occur in body tissues as transepithelial cellular potentials or 

neuronal field potentials, and are important for tissue regeneration following injury and 

during embryonic and fetal development, with disturbances to environmental electric 

fields causing aberrant development[116-119]. Accordingly, elastic modulus and 

surface properties (eg. topography/roughness) of cell culture substrates and electrical 

stimulation are being used to control stem cell behaviour and function for basic 

research and future translational application. To this end, natural and synthetic 

biomaterials are being identified with different mechanical, chemical, electrical, and 

physical features of micro- and nanoscale proportions to control cell fate and function 

for in vitro modelling of neural tissues and disease phenotypes [120,121].  

Natural biomaterials include Polysaccharides as important components of 

extracellular matrix (ECM) that can be formulated to rapidly gel for 3-dimensional (3-D) 

bioprinting, and have been used in various combinations for culture and differentiation 

of pluripotent stem cells [122-127]. Commonly employed polysaccharide-based 3-D 

scaffolds include collagen, gelatin, agarose, hyaluronic acid, elastin, alginate and 

chitosan, each having the potential for use in combination with iPSCs for neural tissue 

engineering. Not surprisingly, ECM has informed the development of platforms and 

constructs based on natural biomaterials. Advantages include biocompatibility 

(essential for in vitro cell interfacing, transplanted cell support in vivo and related 

endogenous/host tissue compatibility) and bioactivity with materials supporting cell 

adhesion and survival, induction of iPSC differentiation, and structural support of 
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engineered tissues. Disadvantages relate to quality control with variable purity and 

biological activity from one lot to another, and limited mechanical properties. Synthetic 

biomaterials, on the other hand, have the advantage of being more defined and 

controllable (through, for example, fabrication) so as to conform to required 

specifications concerning nanotopography, chemical composition, stability and 

functionality, stiffness, adhesiveness and binding affinity, degradability and related by-

products[128].  

Biomaterials can therefore be tailored to support and regulate iPSCs and 

derivative neuronal cells, carry and release drugs and other compounds, and degrade 

over a set period of time so as to meet the rigorous requirements for pharmaceutical 

drug screening and clinical use. While disadvantages can include poor biocompatibility 

resulting in poor cell adhesion, survival, self-renewal, differentiability and 

transplantability, the inherent capacity for refinement through design and 

reengineering provides opportunities to systematically optimise performance and 

application (FIGURE 1). 

Although there have been few reports to date of biomaterial based iPSC culture 

for neural induction, the ability for materials to interface with hESCs for neural 

differentiation is indubitably applicable. Nevertheless, a recent landmark report 

involving both hESCs and iPSCs  describes 3-D poly(N-isopropylacrylamide)-co-

poly(ethylene glycol) (PNIPAAm-PEG) hydrogel support of stem cell expansion and 

differentiation [125](Table 1). PNIPAAm-PEG is a synthetic thermoresponsive hydrogel 

that is liquid at low temperature for cell loading, which solidifies at 37oC for subsequent 

3-D cell culture, including directed differentiation to neuronal progenitors (NPs).  The 

system ostensibly enables defined, good-manufacturing practice-compatible and large-
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scale expansion of both stem cells and NPs for translational application, including 

commercial-scale drug screening and clinical-scale use.    

A second report of significance relates to the use of 3-D conductive carbon 

nanotube (CNT) composites as substrates to support and differentiate NPs derived from 

human iPSCs[129](Table 1). The CNTs were incorporated by vacuum-driven 

impregnation to electrospun poly(lactic-co-glycolic acid) (PLGA) membranes and 

shown to enhance differentiation of iPSC derived NPs, further augmented by electrical 

stimulation.   Similar to Lei and Schaffer described above, the authors proffer their 

platform for drug discovery, disease modelling and in vivo transplantation including 

facilitation of exogenous cell delivery and integration.     

In recognising the important role of biomaterials in next generation stem cell 

technology including tissue engineering and regenerative medicine, like others, we at 

the ARC Centre of Excellence for Electromaterials Science are undertaking R&D in the 

additive manufacturing or 3-D bioprinting (BP) space to reproducibly interface natural 

and synthetic materials with human iPSCs towards solving the many and unique 

challenges in neural tissue engineering and disease modelling. To this end, we are 

developing optimal and novel bioinks primarily for extrusion printing, comprising 

iPSCs, biocompatible gel composites, and other components for supporting cell growth 

and differentiation to neural lineage. While currently we are printing single cell types 

for in situ differentiation, we will progress to more complex multicellular printing and 

placement for more efficient and germane construct design, with the holy-grail for 

developing multidimensional “live” constructs being able to support vascularisation 

towards formation of clinical-scale tissues and whole-organ substitutes[130]. 

Incorporation of vascular networks will also benefit metabolically active neural 

constructs, currently limited to millimetre thickness.    
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Expert commentary 

`Based on the remarkable complexity of the human nervous system, and in particular 

the brain, it is the least understood body system and is difficult to model with 

conventional technology. Short of modelling the human CNS as a whole, models must 

ideally be humanised, diverse, complimentary and be explicitly defined in terms of what 

they simulate. To this end, human patient/disease-specific iPSC modelling provides an 

opportunity to unravel the complexity behind neurological function and disease in a 

way that has never been possible before. As cells containing the actual genetic 

information of the patients from which they are derived and able to be differentiated to 

mixed and subtype-specific neuronal populations both in 2-D and 3-D configurations, 

iPSCs are suited to modelling NDv disorders, enhanced by their presumed early 

developmental status, as well as NDg disorders by providing a pathological context to 

elucidate aberrant biological processes for therapeutic targeting including halting 

endogenous disease progression without neurotoxicity, and where necessary 

concomitant tissue regeneration. Importantly, toxicity testing is vital to determining the 

clinical efficacy of a drug or device, and relates to both chemical and physical 

impairment[131,132].  The developing brain is particularly sensitive to chemical 

perturbations. In vitro iPSC-based systems potentially offer a cost and time effective 

approach to identifying and characterising neurotoxicity, being amenable to 

mechanistic studies at both cellular and molecular levels, as well as ranking 

neurotoxicants for toxic potency. Therefore, neural-specific endpoints for screening 

putative neurotoxicants would include neuro-chemical, -morphologic, and –

transmission functions.               
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In recognising the value of iPSC modelling though, there are a number of 

challenges required to be overcome before their potential as clinically relevant ex vivo 

models of neurological disorders can be fully realised.  A critical requirement is to 

demonstrate robust and reproducible cell phenotypes relating to both normal and 

aberrant function.  This will depend on overcoming shortfalls in knowledge about iPSC 

biology including the effects of cell reprograming, transcriptional memory of primary 

cells, cell-line variability in pluripotency and differentiability, impact of donor age and 

associated cell line maturation, as well as related standardisation of cell culture and 

characterisation. In addition, complex genetic conditions such as schizophrenia with 

heterogenous clinical etiologies and symptoms will benefit from developing iPSC study 

cohorts of patients with common clinical manifestations and/or genomic mutations[7]. 

This is particularly important for small donor-cohorts characteristic of iPSC-based 

modelling.  

Through better understanding of the various modalities, more controllable 

systems with properties that are tailored to modelling specific neural cells and 

disorders of interest can be developed. This should ideally extend to being compatible 

with necessary characterisation tools and minimally incorporate key components of the 

in vivo cellular microenvironment as critical stimuli of normal and anomalous cell 

behaviour. The latter will likely require a biomaterials-based approach whereby 

synthetic, natural and functionalised materials will interface with iPSCs and iPSC-

derived neural tissues via inherent and engineered physical and chemical properties. 

The ability to spatially modulate composition and function using emerging approaches 

such as 3-D printing provides an unprecedented opportunity to systematically probe 

and control cellular behaviour. Ironically, the use of material properties to dictate 

clinically relevant cell phenotypes ex vivo will be paralleled by material-mediated 
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correction of aberrant cellular function as a potential therapeutic strategy for TI’s, NDds 

and NDgs.  The materials may be fabricated into scaffolds, encapsulating gels or probes 

to generate healthy autologous tissues in vitro from diseased tissues for in vivo grafting, 

and/or optimised as medical devices to modify endogenous cells and tissues.  While the 

jury is still out, it is hoped that in addition to generating more efficacious systems, 

harnessing the inductive capabilities of biomaterials will circumvent current cost-

barriers caused by inefficient and expensive bioprocessing, including reducing or 

omitting the need for biochemical reagents[128].        

 

Five-year view 

The next five years will see a rapid transition from first generation iPSC-based 

modelling using simple 2-D study paradigms to more sophisticated and clinically-

relevant second-generation systems that incorporate, for example, extracellular stimuli 

with patient-specific cells and 3-D tissues using “smart” biomaterials and 

microfluidics[133,134]. Although there are challenges, a number of which are 

highlighted above, there is sufficient evidence for being able to recapitulate with iPSCs 

the neuropathologies of various neurological disorders to further elucidate underlying 

cellular and molecular mechanisms that have heretofore been unknown.  Combined 

with increasing recognition of the importance of standards for modelling, including iPSC 

culture, differentiation and characterisation, the body of knowledge will continue to 

increase exponentially, ultimately benefiting progress in therapy.       
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Figure 1. Schema of biomaterials-based iPSC culture and differentiation for advanced 

neurological disease modelling, early-phase drug screening, and development of 

implantable neural cells, tissues and medical devices. Biomaterials with suitable chemical, 

physical, mechanical, and electrical properties are being interfaced with iPSCs for expansion and 

to ameliorate neural induction for improved modelling of neural tissues and disease 

phenotypes. 
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